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Topics for discussion
 Motivation for meta-GGA
 Numerical challenges of SCAN and R2SCAN
 PAW datasets for R2SCAN
 Do we need them or can we “cheat” and just use PAW 

datasets for other exchange-correlation functionals?
 Do the PAW  and norm-conserving formalisms behave in 

the same way in this regard?
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In collaboration with François Jollet and Marc Torrent since ~ 2000
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Motivation and brief history –

 As density functional theory develops, new exchange correlation 
functionals are frequently proposed and, thanks to Libxc  (Marques et 
al.   Comp. Phys. Comm. 183, 2272 (2012), Lehtola et al.  Software X 7, 1 
(2018)), they can be incorporated into various codes.

 The meta-GGA functional form adds the kinetic energy density into the 
functional;  considerable improvements in DFT prediction of materials 
properties has been reported within the context of  “generalized” DFT 
(Yang et al. PRB  93, 205205 (2016))

 “SCAN” form of meta-GGA -- “Strongly Constrained and Appropriately 
Normed Semilocal Density Functional”  (Sun et al.  PRL 115, 036402 
(2015)) demonstrates improved materials prediction for a variety of 
systems; ~2300 citations as of June 2400.
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Motivation and brief history – continued –

 However, most of the SCAN results were obtained using codes with 
localized basis sets or VASP which appears to use a special form of 
SCAN functional.

 Several authors reported numerical difficulties in using plane wave 
codes with the SCAN functional (Yao et al.  JCP 146, 224105 (2017), 
Bartók et al. JCP 150, 161101 (2019) & rSCAN)

We found that the exchange-correlation potentials for the  SCAN form 
analytically diverges in regions of space where the radial wavefunction 
decreases exponentially.

 A revised functional was introduced by the Tulane and Temple groups 
(“Accurate and Numerically Efficient r2SCAN Meta-Generalized 
Gradient Approximation”, Furness et al., J. Phys. Chem. Lett 11, 8208 
(2020)); ~400 citations as of June 2024.
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Functional form of Vxc(r) for textbook model of He atom thanks to 
L. Schiff, Quantum Mechanics (1955) 
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Unphysical 
behavior of  Vxc(r) 
for SCAN 
discouraged 
further 
development.

Better behavior of  
Vxc(r) for r2SCAN 
allowed for resumption 
of project.
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https://medium.com/betterism/the-blind-men-and-the-elephant-596ec8a72a7d

https://medium.com/betterism/the-blind-men-and-the-elephant-596ec8a72a7d
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Constraint 
satisfactio
n

Numerical 
reliability

Correct 
structure 
predictio
n

Correct 
energy 
barriers

Correct 
reaction 
energies

Correct lattice 
parameters

Condensed matter scientists and the ideal exchange-correlation functional

Constraint 
satisfaction

Numerical 
reliability

Correct 
structure 
prediction

Correct 
energy 
barriers

Correct reaction 
energies

Correct lattice 
parameters

Adapted story – elephantDFT theory & computation
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Systematic equations --
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dimensionless “kinetic 
potential”
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Self-consistent generalized Kohn-Sham equations:

( ) ( ) 0
i i i in nl lH r rϕ− =

occupancy for state nili

Some details for a spherical atom --
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Some details regarding functional forms associated with kinetic energy density τ(r)
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Original r2SCAN  η=0.001
            r2SCAN01 η=0.01

Instability for 
a coarser  
mesh.
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Comparison of self-consistent Vxc(r) for a Si atom with 
different functional forms

Generalized 
Kohn-Sham
Kohn-Sham
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Comparison of self-consistent Vτ(r) and Vxc(r) for atoms in 
the 3rd row of the periodic table

Al
AlAr

Ar
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Numerical methods for converging self-consistent equations

 Finite difference methods tend to generate instabilities
 Developed a cubic spline scheme that seems to work 

better.
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Spline solver algorithm
Cubic spline interpolation -- J. H. Ahlberg, The theory of splines and their 
applications (1967)  and Carl de Boor, A practical Guide to Splines (1978) – based on 
representing a one-dimensional function by a piecewise continuous polynomial of 
order 3.
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1. Discretize x xi   yi=y(xi)
2. Represent y(x) in terms of a cubic spline interpolation
3. Use the spline relations for first and second derivatives and 

the relation FM=Gy so that the differential eigenvalue 
equation on the nodes becomes a linear algebraic 
eigenvalue problem. y yε=Λ
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Some details
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More
details

( )0Radial mesh --  ( ) 1   

  discretization --      for 1, 2,... ;       0  is treated specially
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This behavior alters the 
first row of F and G 
matrices

From eigenvectors yi, φ(r(x)) is determined by interpolation.
Only the first few eigenvalues/vectors are needed for the 
self-consistency iterations.  Often found to be more efficient 
than methods based on finite differences.
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Pseudization schemes
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Construction of PAW datasets Frozen core approximation:
          All electron treatment               Pseudo electron treatment
              ( ) ( )                            ( ) ( )
              ( )
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+ +
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Core functions for Si atom 
-- Note:

 For Coulombic (Hartree 
terms) the core is included in 
the local pseudopotential

 For Vxc(r), the non-linear core 
corrections are important
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τV

τV

Example pseudization of 
kinetic potential Example pseudization of 

effective potential

effV

effV

(dashed lines represent unscreened 
potentials)
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C  6
XC_LDA_X+XC_LDA_C_PW   loggrid 2001
2 2 0 0 0 0
2 1 2
0 0 0
c
v
v
1
1.3  1.1   1.3   1.0
y
16
n
y
12
n
MODRRKJ   VANDERBILTORTHO     BESSELSHAPE
2 0   MTROULLIER
1.3
1.3
1.3
1.3
ABINITOUT
default
XMLOUT
default

C  6
WTAU  XC_MGGA_X_R2SCAN01+XC_MGGA_C_R2SCAN01  splr00.1d0 splns600   loggrid 2001
2 2 0 0 0 0
2 1 2
0 0 0
c
v
v
1
1.3  1.1   1.3   1.0
y
16
n
y
12
n
MODRRKJ   VANDERBILTORTHO     BESSELSHAPE
2 0   MTROULLIER
1.3
1.3
1.3
1.3
ABINITOUT
default
XMLOUT
default

Atompaw input files for C
      LDA                                                 R2SCAN01

WTAU  XC_MGGA_X_R2SCAN01+XC_MGGA_C_R2SCAN01  splr00.1d0 splns600   loggrid 2001
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Example – binding energy curve for C (diamond)
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Example:    Binding energy curves  for Ne and Ar (fcc)
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Outlook
 Atompaw version 4.2.0.5 is currently being debugged 

(minor updates and bug fixes to 4.2.0.3) 
 More testing needs to be done.
 It would be nice to know how/why the cheating method 

works so well.  Is it something about PAW or do NC 
datasets also have this property?

 Should we try to develop R2SCAN01 datasets for elements 
across the periodic table or not?

 Testing datasets on other compatible codes such as 
Quantum Espresso? 
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Thank you!
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