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Outline
Motivation – Why solid electrolytes?
Computational  tools & reality checks; what can 

be learned from “first principles” calculations?
Simulations of bulk properties and ion mobility

Li phosphorus oxynitrides (first developed at 
Oak Ridge National Laboratory)

Li thiophosphates
Simulations of interfaces with metallic Li
Summary and remaining challenges
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Materials components of a Li or Na ion  battery

or
Na+
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Development of LiPON electrolyte films 
at Oak Ridge National Laboratory
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Advantages
 Compatible and stable with 

high voltage cathodes and 
with Li metal anodes

Disadvantages
 Relatively low ionic conductivity 

(Compensated with the use of 
less electrolyte?)

 Lower total capacity

Demonstrated for LiNi0.5Mn1.5O4/LiPON/Li  
 10-6 m LiPON electrolyte layer achieved adequate conductivity 
 10,000 cycles* with 90% capacity retention

*1 cycle per day for 27 years

From Oak Ridge National Laboratory:
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Motivation: Paper by N. Kayama, et. al in Nature Materials 10, 682-686 (2011)
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

LiPON
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li7P3S11
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li7P3S11

b-Li3PS4
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li10GeP2S12
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Solid electrolyte families
investigated in this study:

LixPOyNz

LixPSy
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Computational  tools
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Summary of “first-principles” calculation methods

Exact Schrodinger equation:

({ },{ }) ({ },{ }) ({ },{ })a a a
i i iE    r R r R r RH


Electronic coordinates

Atomic coordinates

Born-Oppenheimer approximation
Born & Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)

Nuclei Electrons

Approximate factorization:

({ },{ }) ({ }) ({ },{ })a a a
i iX   r R R r R

Nuclei Electrons

where

({ },{ }) ({ }) ({ },{ })a a a
i ir R R r RH H +H

Treated with classical mechanics Treated with density 
functional theory
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Density functional theory
Hohenberg and Kohn, Phys. Rev. 136 B864 (1964)
Kohn and Sham, Phys. Rev. 140 A1133 (1965)

 0 0Mean field approximation:  ({ }) ( ( ) ,{ })        a aU U R r R
Electron
density

Independent electron wavefunction

2
Kohn-Sham construction:    ( ) ( )    (  )   nK

n
S    rr r

Electrons
KS ( , ( ),{ }) ( ) ( )   a

n n n   r r R r rH



Exchange-correlation functionals:
LDA: J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996)
HSE06: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP 118, 8207 (2003)

5/10/2017 EMCMRE-2017 15

More computational details:
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Numerical methods:
“Muffin-tin” construction:  Augmented Plane Wave developed 
by Slater  “linearized” version by Andersen:

J. C. Slater, Phys. Rev. 51 846 (1937)
O. K. Andersen, Phys. Rev. B 12 3060 (1975)  (LAPW)

Pseudopotential methods:
J. C. Phillips and L. Kleinman, Phys. Rev. 116 287 (1959) -- original idea
P. Blöchl, Phys. Rev. B. 50 17953 (1994) – Projector Augmented Wave (PAW) 
method

electron-nucleus electron-electron exchange-
correlation
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Codes used for calculations

Function Code Website

Generate atomic datasets ATOMPAW http://pwpaw.wfu.edu

DFT; optimize structure PWscf
abinit

http://www.quantum-espresso.org
http://www.abinit.org

Structural visualization XCrySDen
VESTA

http://ww.xcrysden.org
http://jp-minerals.org/vesta/en/
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ATOMPAW Code for generating atomic datasets for PAW calculations
Holzwarth, Tackett, and Matthews, CPC 135 329 (2001)  http://pwpaw.wfu.edu
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Atomic PAW datasets:
Comparison with LAPW results 
for binding energy curves --
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Validation
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Li3PO4 crystals

(Pnma)

(Pmn21)
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Validation of calculations

A:  B. N. Mavrin et al,  J. Exp. Theor. Phys. 96,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi 
B 66, 237 (1974) – room temp.  C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman 
Spectrosc. 34,77 (2003). 
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Heats of formation – Experiment & Calculation
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Estimate of ionic conductivity assuming 
activated hopping

:

Em ≤ EA ≤ Em+½Ef



5/10/2017 EMCMRE-2017 25

Arrhenius activation energies – simulation and experiment

Material Em (eV) Ef (eV) EA (eV) EA (eV) Ref.

LiPON ≈0.6 Amorphous

-Li3PO4 0.3 1.7 1.1 1.13 Single crystal

SD-Li2PO2N 0.4 2.0 0.4-1.4 0.6 Poly. crystal

Li14P2O3N6 0.3 0.3 0.3-0.4

Li7PN4 +O 0.5 - 0.5 0.48 Poly. crystal

b-Li3PS4 0.2 0.0 0.2 0.4 Poly. crystal

Li7P2S11 0.2 0.0 0.2 0.1 Poly. crystal

Simulation Experiment
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What is meant by “first principles”?

A series of well-controlled approximations
 Born-Oppenheimer Approximation
 Density Functional Approximation
 Local density Approximation (LDA)
 Numerical method:  Projector Augmented Wave

Validation
 Lattice vibration modes
 Heats of formation
 Activation energies for lattice migration 
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How can computer simulations contribute
to the development of materials?

 Computationally examine known materials and predict 
new materials and their properties
 Structural forms
 Relative stabilities
 Direct comparisons of simulations and experiment
 Investigate properties that are difficult to realize 

experimentally 

Of particular interest in battery materials --
 Model ion migration mechanisms

 Vacancy migration
 Interstitial migration
 Vacancy-interstitial formation energies

 Model ideal electrolyte interfaces with anodes
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Systematic study of LiPON materials – LixPOyNz –
(Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 81, 184106 (2010) )

Typical composition of 
amorphous LiPON films
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Experimentally 
known structure

Computationally 
predicted structure
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Computationally predicted structure

Experimentally realized structure
SD-Li2PO2N Cmc21

Pbcm

Synthesis of Li2PO2N by 
Keerthi Senevirathne, 
Cynthia Day, Michael Gross, 
and Abdessadek Lachgar
(SSI 233, 95-101 (2013))
High temperature solid state 
synthesis using reaction:

1 1
2 2 5 3 5 2 25 5

Li O  P O  P N Li PO N  

Calculations have now 
verified that the SD structure 
is more stable than the s1

structure by 0.1 eV/FU.
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Comparison of synthesized Li2PO2N with Li2SiO3

SD-Li2PO2N (Cmc21) Li2SiO3 (Cmc21)

a=9.07 Å, b=5.40 Å, c=4.60 Å a=9.39 Å, b=5.40 Å, c=4.66 Å 
K.-F. Hesse, Acta Cryst. B33, 901 (1977)

NOPLi Si
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Ionic conductivity of SD-Li2PO2N

NEB analysis of Em

(vacancy mechanism)

6  S/cm   at 81 0  C0 o -

1
2

0.4 eV; 2 eV

1.4 eVA f

m f

m

E

E E E

E 

  

Sample has appreciable 
population of vacancies
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Summary of the Li2PO2N  story
 Predicted on the basis of first principles theory
 Subsequently, experimentally realized by Keerthi

Seneviranthe and colleagues;   generally good 
agreement between experiment and theory

 Ion conductivity properties not (yet) competitive
 Crystalline SD-Li2PO2N (Cmc21) is quite different from 

the amorphous LiPON electrolyte developed at ORNL
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European Journal of Inorganic 
Chemistry 2015, 617-621 (2015)
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a
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Comparison of 
partial densities of 
states of various 
LixPOyNz materials
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Arrhenius activation energies – simulation and experiment

Material Em (eV) Ef (eV) EA (eV) EA (eV) Ref.

LiPON ≈0.6 Amorphous

-Li3PO4 0.3 1.7 1.1 1.13 Single crystal

SD-Li2PO2N 0.4 2.0 0.4-1.4 0.6 Poly. crystal

Li14P2O3N6 0.3 0.3 0.3-0.4

Li7PN4 +O 0.5 - 0.5 0.48 Poly. crystal

b-Li3PS4 0.2 0.0 0.2 0.4 Poly. crystal

Li7P2S11 0.2 0.0 0.2 0.1 Poly. crystal

Simulation Experiment
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Other electrolyte materials -- thiophosphate
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Systematic study of LixPSy materials – (N. D. Lepley and N. A. W. 
Holzwarth, J. Electrochem. Soc. 159,  A538 (2012), Phys. Rev. B 88, 
104103 (2013) )
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Comparison of some lithium 
phosphates and thiophosphates

Crystallizes (experimentally and

 computationally) into 1 structureP

Experimentally amorphous;

computationally metastable

in 1 structureP
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Some lithium thiophosphate
crystal structures

Experimentally amorphous;

computationally metastable

in 1 structureP

Experimentally and computationally

metastable in 1 structureP
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Li         P           S

Vacancy migration analysis from NEB results 
for Li7P3S11:

1
2

0.15 eV; 0 eV

0.15 eV

m f

mA fE E

EE

E

 

  

Experiment -- A Hayashi et al., J. Solid State Electrochem. 14, 1761 (2010):
310  S/cm              E2 3 0.12 0.18 eVA - -  -

Lepley & Holzwarth, JECS 159, A538-A547 (2012) 
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From ORNL:  Experiment on electrolyte  Li3PS4
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b-Li3PS4

-Li3PS4

Li         P           S
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Lepley, Du,  and Holzwarth, PRB 88, 104103 (2013)
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Summary of the LixPSy story

 Simulations verify that thiophosphates have 
better ion mobility properties than their 
phosphate analogs

 Meta-stable crystalline Li7P3S11 has been shown to 
have particularly favorable ion migration pathways

 - and b-Li3PS4 have very similar structures, but 
simulations show their ion mobilities to be 
different. 
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Models of Idealized Interfaces
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Crystal structure of bulk Li3PS4 – -form 
Pmn21 (#31)

Note:  Li3PS4 is also found in
the  b-form with Pnma (#62)
structure
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-Li3PS4 [0 1 0] surface 
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Simulations of ideal -Li3PS4 [0 1 0] surface
in the presence of Li

Initial configuration: Computed optimized 
structure:
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Within any given periodic simulation cell with  units of material  and with

 units of material , we can define an interface energy:
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In order approximately remove the effects of lattice strain:

  Design the supercell to be commenserate with lattice 

  Now the strain will scale with the amount of material 
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Quantitative study of interfaces –
(Lepley & Holzwarth, PRB 92 214201 (2015)) 



5/10/2017 EMCMRE-2017 51

It is convenient to model the interface between 
a solid electrolyte and solid electrode in the 
slab geometry using a periodic simulation cell:

supercell repeat unit

ideal interfaces
-Li3PO4Li Li

Li           P           O   



5/10/2017 EMCMRE-2017 52

   lim

Lepley's linear equation for the interface 

energy:   , , ab a b ab bn n n       

 lim
ab  

Li           P           O   
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e
System Fermi level

Energy diagram for ideal electrolyte/metal interface

valence bands

conduction bands
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Li14P2O3N6  interfaced with Li metal
Al-Qawasmeh and Holzwarth, to be published

Partial densities of states plots
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-Li3PS4 [010]/Li2S [110] Li           P           S   

Li2S Li2S-Li3PS4

Stable interface;  composite electrolyte system



5/10/2017 EMCMRE-2017 56

-Li3PS4 [010]/Li

-Li3PS4 LiLi

Li           P           S   

Initially unstable interface;   (meta)-stable buffer layer formed
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Partial density of states analysis of unstable 
Li3PS4/Li interface:

P+5

P-3
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Bulk reactions from estimated heats of formation

Decomposition at interface

(Meta-)stable interface
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Evidence of kinetic barrier at
Li3PO4/Li interface

NEB reaction coordinate



5/10/2017 EMCMRE-2017 60

Summary of ideal interface story
 A practical scheme was developed to compute an 

intensive measure of the interface interaction       , 
explicitly accounting for the effects of lattice stain.

 Discussed bulk reactivity as related to the interface 
stability of the interfaces of 
 Li3PO4/Li  (having a significant kinetic barrier to 

decomposition) 
 Li3PS4/Li (having localized decomposition).

int
ab
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Additional thoughts

 Limitations of first principles modeling
 Small simulation cells
 Zero temperature

 Possible extensions
 Develop approximation schemes for treatment 

of larger supercells
 Use molecular dynamics and/or Monte Carlo 

techniques
 Ideal research effort in materials includes close 

collaboration of both simulations and experimental 
measurements.

 For battery technology, there remain many 
opportunities for new materials development.


