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Motivation
• Why Optimized Effective Potential (OEP)?a

– Orbital-dependent exchange-correlation functionals within the Kohn-Sham
framework of density functional theoryb

– Self-interaction-free treatment of electrons

• Why Projector Augmented Wave (PAW)?c

– Efficient pseudopotential-like scheme

– Accurate evaluation of multipole moments in Coulomb and exchange interaction
termsd

aReview articles: S. Kümmel and L. Kronik, RMP 80, 3-60 (2008); T. Grabo et al in Strong Coulomb
correlations in electronic structure calculations, V. Anisimov, ed. Gordon and Breach (2000), pg. 203-311.

bW. Kohn and L. Sham, PR 140, A1133-A1138 (1965)
cP. Blöchl, PRB 50, 17953-17979 (1994)
dJ. Paier et al, JCP 122, 234102 (2005)
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Motivation (continued)
Self-interaction problem

Within Kohn-Sham theory, the total electronic energy is a functional of the electron
density ρ(r) having the form:

Etot(ρ) = EK(ρ)︸ ︷︷ ︸
Kinetic

+EN (ρ)︸ ︷︷ ︸
Nuclear

+EH(ρ)︸ ︷︷ ︸
Hartree

+ Ex(ρ)︸ ︷︷ ︸
Exchange

+ Ec(ρ)︸ ︷︷ ︸
Correlation

. (1)

Here,

EH(ρ) ≡ e2

2

∫ ∫
d3r d3r′

ρ(r)ρ(r′)
|r− r′| , (2)

representing the Coulomb interaction between electrons, including the self-interaction.
Only for Ex chosen to have the form of Fock exchange, can this self-interaction be
completely removed from the formalism.
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Motivation (continued)
Fock exchange form

Ex({Ψp(r)}) = −e
2

2

∑

pq(occ)

δσpσq

∫
d3r

∫
d3r′

Ψ∗p(r)Ψq(r)Ψp(r′)Ψ∗q(r′)
|r− r′| , (3)

where the summation over all occupied states includes the the self-interaction correction
for p ≡ q and σp ≡ σq . For wavefunctions Ψp(r) representing extended states, the
self-interaction energy is not large. Two notable exceptions are:
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Motivation (continued)
Some self-interaction correction schemes

• SIC-LSD – Perdew and Zunger, PRB 23, 5048-5079 (1981)

• LDA+U – Anisimov et al, PRB 44, 943-954 (1991); Cococcioni and
Gironcoli, PRB 71, 035105 (2005)

⇒ Orbital-dependent density functionals:
Ex ≈ Fock exchange
Ec = consistent correlation functional.
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Scope of present work (so far)
• Choose Ex to be Fock exchange (EXX). The corresponding Kohn-Sham local potential is

Vx(r).

• Choose Ec ≡ 0 for the moment (hoping that an appropriate functional will soon be
developed) (OEP). The corresponding Kohn-Sham local potential Vc(r) would then be added.

• Develop OEP-EXX for all electrons in spherical atoms

• Adapt OEP-EXX formalism to the projector augmented wave (PAW)
formalism in order to carry out calculations for extended systems.

⇒ Formulate and test a frozen core approximation scheme.

⇒ Apply the PAW formalism to valence electrons
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All-electron atomic OEP-EXX equations
The basic equations can be derived as a constrained minimization problem to determine
Kohn-Sham radial orbitals {ψp(r)}a and to minimize the total energy of the system with
the help of Lagrange multipliers:b

F ({ψp}, Vx, {gp}, {εp}, {λqp}) =

Etot({ψp})−
∑

p

(〈gp|HKS − εp|ψp〉+ cc)−
∑
pq

λpq (〈ψp|ψq〉 − δpq) . (4)

The Kohn-Sham Hamiltonian HKS is given by the kinetic energy operator and potential
terms:

HKS = K̂ + VN (r) + VH(r) + Vx(r), (5)

where

VN (r) ≡ δEN

δρ(r)
, VH(r) ≡ δEH

δρ(r)
, (6)

and the local exchange potential Vx(r) is to be determined.
aThe index p stands for atomic shell quantum numbers nplp corresponding to shell occupancy Np.
bHyman, Stiles, and Zangwill, PRB 62, 15521-15526 (2000)
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All-electron atomic OEP-EXX equations (continued)
At self-consistency, the following equations must be satisfied
simultaneously:

HKS = K̂ + VN + VH + Vx HKS|ψp〉 = εp|ψp〉 〈ψp|ψq〉 = δpq (7)

(HKS − εp) |gp〉 =
1

Np

δEx
δψ∗p(r)

− Vx(r)|ψp〉 −
∑
q

λpq|ψq〉, (8)

where λpq = 〈ψq| δEx
δψ∗p(r)

〉 − 〈ψq|Vx|ψp〉 and 〈gp|ψq〉 = 0.

∑
p

Npgp(r)ψp(r) = 0. (9)

In practice, the equations are solved iteratively yielding results consistent
with the Green’s function formulation of earlier work.a

aTalman and Shadwick, PRA 14 36-40 (1976); Engel and Vosko, PRA 47 2800-2811 (1993); T. Grabo et
al in Strong Coulomb correlations in electronic structure calculations, V. Anisimov, ed. Gordon and Breach
(2000), pg. 203-311.
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All-electron atomic OEP-EXX results for carbon
Auxiliary functions gp(r):
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All-electron atomic OEP-EXX results for Vx(r)
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Frozen core atomic OEP-EXX equations
In order to focus computational effort on the valence properties of materials, it is necessary to develop a frozen
core approximation scheme. For each material (other than H and He), it is possible to partition the states into
core and valence contributions:

p→
8
<
:

v for valence shells (typically partitially occupied)

c for core shells
(10)

In a similar way, we can partition, the electron wavefunctions

ψp(r) →
8
<
:

ψv(r) for valence states

ψc(r) for core states
(11)

and the auxiliary functions

gp(r) →
8
<
:

gv(r) for valence states

gc(r) for core states
(12)

and the local exchange potential
Vx(r) = V core

x (r) + V vale
x (r). (13)

The challenge is to devise a scheme where the functional variation is allowed only for {ψv(r)} and
V vale

x , consistent with the all-electron equations of the reference configuration.
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Frozen core atomic OEP-EXX equations (continued)
Partitioning of the reference configuration to define V core

x

All-electron auxiliary function equation:

(HKS − εv) |gv〉 =
1

Nv

δEx

δψ∗v(r)
− Vx(r)|ψv〉 −

X
q

λvq |ψq〉 (14)

For the reference configuration, we assume a partitioning of the valence auxiliary function:

gv(r) ≡ gcorev (r) + gvalev (r) (15)

satisfying the following two equations:

(HKS − εv) |gvalev 〉 =
1

Nv

δEvv
x

δψ∗v(r)
− V vale

x (r)|ψv〉 −
X

q

λvale
vq |ψq〉, (16)

and

(HKS − εv) |gcorev 〉 =
1

Nv

δEcv
x

δψ∗v(r)
− V core

x (r)|ψv〉 −
X

q

λcore
vq |ψq〉. (17)

The original shift equation becomes

X
p

Npgp(r)ψp(r) = 0 →

8
>>>><
>>>>:

X
v

Nvg
vale
v (r)ψv(r) = 0

X
c

Ncgc(r)ψc(r)

| {z }
Core shift

+
X

v

Nvg
core
v (r)ψv(r) = 0 (18)
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Frozen core atomic OEP-EXX equations (continued)
Total valence energy in frozen core approximation

Evale
tot = EK(ρv) + EN (ρv) + Ecv

H (ρv) + Evv
H (ρv) + Ecv

x (ρv) + Evv
x ({ψv}), (19)

where Ecv
x (ρv) ≈

Z
d3r V core

x (r)ρv(r).

Once V core
x (r) has been determined for the reference configuration, the self-consistent equations to solve for

excited valence configurations are:

HKS = bK + VN + VH + V core
x + V vale

x HKS |ψv〉 = εv|ψv〉 (20)

(HKS − εv) |gvalev 〉 =
1

Nv

δEvv
x

δψ∗v(r)
− V vale

x (r)|ψv〉 −
X
w

λvale
vw |ψw〉, (21)

where λvale
vw = 〈ψw| δE

vv
x

δψ∗v(r)
〉 − 〈ψw|V vale

x |ψv〉.
X

v

Nvg
vale
v (r)ψv(r) = 0. (22)

Here, |ψv〉, |gvalev 〉, and V vale
x are updated self-consistently through these equations.
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Frozen core atomic OEP-EXX results for carbon

All-electron auxiliary functions gv(r):
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Frozen core atomic OEP-EXX results for carbon

All-electron shift components Npgp(r)ψp(r)
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Frozen core atomic OEP-EXX results for carbon

Local exchange potential Vx for refer-
ence configuration ([He]2s22p2) and its
decomposition into V vale

x and V core
x :
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Frozen core atomic OEP-EXX results for iron
Frozen core shift components:
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Frozen core atomic OEP-EXX results for iron
Comparing decomposition: Vx = V vale

x + V core
x for two choices of core

configuration
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Summary of frozen core errors in excitation energies

∆∆E = Evale
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The projector augmented wave method (PAW)
The PAW formalism was developed by P. Blöchl (PRB 50,
17953–17979 (1994)), having similarities to the
soft-pseudopotential formalism of D. Vanderbilt (PRB 41
7892-7895 (1990)). One distinguishing feature of PAW, is
the transformation between all-electron valence
wavefunctions Ψv(r) and eΨv(r) :

Ψv(r) = eΨv(r) +
X

ai

“
φa

i (r−Ra)− eφa
i (r−Ra)

”
〈pa

i |eΨv〉, (23)

where φa
i , eφa

i , and pa
i are atom-centered all-electron basis,

pseudo-electron basis, and projector functions, respectively.

Computational work is performed on pseudofunctions
eΨv(r) after which all-electron functions Ψv(r) can be
retreived from PAW transformation.
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Comparison of results from different codes
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With care, consistent numerical results can be achieved using different formalisms and codes.

PWscf PAW LAPW

www.pwscf.org pwpaw.wfu.edu www.wien2k.at

soft-pseudopotentials Projector Augmented Wave Linearized Augmented Plane Wave
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The PAW method (continued)
Importance of PAW transformation to Hartree and Fock integrals

Given the PAW transformation for a valence wavefunction:

Ψv(r) = eΨv(r) +
X

ai

“
φa

i (r−Ra)− eφa
i (r−Ra)

”
〈pa

i | eψv〉, (24)

it is also possible to evaluate the valence electron energy of the system in the form:

Evale
tot = eEtot|{z}

pseudo energy

+
X

a

“
Ea

tot − eEa
tot

”

| {z }
atom-centered corrections

. (25)
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Hartree and Fock integrals (continued)
The product of two wavefunctions Pvw(r) ≡ Ψ∗v(r)Ψw(r) can be well-approximated with the form

Pvw(r) = ePvw(r) +
X

a

“
Pa

vw(r−Ra)− ePa
vw(r−Ra)

”
, (26)

where
ePvw(r) ≡ eΨ∗v(r)eΨw(r), (27)

and
Pa

vw(r)− ePa
vw(r) ≡

X

ij

〈eΨv |pa
i 〉〈pa

j |eΨw〉
“
φa∗

i (r)φa
j (r)− eφa∗

i (r)eφa
j (r)

”
. (28)

Equivalently, we can write:

Pvw(r) = ePvw(r) + bPvw(r) +
X

a

“
Pa

vw(r−Ra)− ePa
vw(r−Ra)− bPa

vw(r−Ra)
”
, (29)

where the “compensation charge”
bPvw(r) ≡

X
a

bPa
vw(r−Ra) (30)

is a smooth function localized within the atomic augmentation spheres such that:

Z
d3r′

Pa
vw(r′)− P̃a

vw(r′)− P̂a
vw(r′)

|r− r′| =

8
<
:

V a
vw(r) for |r−Ra| ≤ ra

c

0 otherwise
. (31)
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PAW atomic OEP-EXX equations
Based on the form of the frozen core constrained minimization problem:

F vale({Ψv}, V vale
x , {gvalev }, {εv}, {λvale

vw }) =

Evale
tot ({Ψv})−

X
v

“
〈gvalev |HKS − εv |Ψv〉+ cc

”
−
X
vw

λvw (〈Ψv |Ψw〉 − δvw) .,
(32)

the PAW contrained minimization expression is given by:

eF ({eΨv}, eV vale
x , {[V a

x ]ij}, {egv}, {εv}, {λvw}) =

Evale
tot ({eΨv})−

X
v

“
〈egv |HPAW − εvO

PAW|eΨv〉+ cc
”
−
X
vw

λvw

“
〈eΨv |OPAW|eΨw〉 − δvw

”
.

(33)

The PAW Hamiltonian takes the form:

HPAW = eH +
X

aij

|pa
i 〉Da

ij〈pa
j | and OPAW = 1 +

X

aij

|pa
i 〉Oa

ij〈pa
j |, (34)

where Oa
ij ≡ 〈φa

i |φa
j 〉 − 〈eφa

i |eφa
j 〉. The smooth Hamiltonian takes the form:

eH = bK + eV (r) where eV (r) = Vloc(r) + eVH(r) + eV vale
x (r); (35)

Vloc(r) includes effects from the pseudized nuclear and core electron potentials. The atomic matrix elements
Da

ij include the valence local exchange potential contributions:

[V a
x ]ij ≡ 〈φa

i |V a,vale
x |φa

j 〉 − 〈eφa
i |eV a,vale

x |eφa
j 〉. (36)
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Update equations for OEP-EXX in PAW formalism
Once basis and projector functions |φa

i 〉, |eφa
i 〉, and |pa

i 〉 and local potential V a
loc has been determined for each

atom, the self-consistent PAW equations are:

HPAW = bK + Vloc + eVH + eV vale
x +

X

aij

|pa
i 〉Da

ij〈pa
j | HPAW|eΨv〉 = εvO

PAW|eΨv〉 (37)

“
HPAW − εvO

PAW
”
|egv〉 =

1

Nv

δEvv
x

δeΨ∗v(r)
−eV vale

x (r)|eΨv〉−
X

aij

|pa
i 〉[V a

x ]ij〈pa
j |eΨv〉−

X
w

λvwO
PAW|eΨw〉,

(38)

where λvw = 〈ψw| δE
vv
x

δeΨ∗v(r)
〉 − 〈eΨw|eV vale

x |eΨv〉 −
X

aij

〈eΨw|pa
i 〉[V a

x ]ij〈pa
j |eΨv〉.

X
v

Nvegv(r)eΨv(r) = 0. (39)

X
v

Nv〈egv|pa
i 〉〈pa

j |eΨv〉 = 0. (40)

Here, |eΨv〉, |egv〉, eV vale
x , and {[V a

x ]ij} are updated self-consistently through these equations.
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Recipes for constructing PAW atomic functions
{|φai 〉}, {|φ̃ai 〉}, {|pai 〉}, and V a

loc

⇒ There is considerable flexibility in choice of functions (within some constraints).

⇒ atompaw code is available from website http://pwpaw.wfu.edu (OEP part not yet included);
interfaces with codes for solids – (pwpaw, socorro (from Sandia National Labs), and abinit (international
code based in Belgium))

General recipe
Based on D. Vanderbilt’s scheme for soft pseudopotentials (other possibilities were programmed by Marc
Torrent in atompaw for abinit)

1. Generate all-electron basis set: HKS |φa
i 〉 = εi|φa

i 〉 including valence states |ψv〉 and (optionally) some
continuum states.

2. For every all-electron basis functions |φa
i 〉, construct corresponding pseudo basis function |eφa

i 〉 such that
eφa

i (r) ≡ φa
i (r) for r > ra

c .

3. Construct projector functions |pa
i 〉 such that 〈eφa

i |pa
j 〉 = δij .

(a) Construct local pseudopotential V PS such that V PS(r) ≡ V (r) for r > ra
c .

(b) Solve the following equations for {|pa
i 〉}:

“
bK + V PS − εi

”
|eφa

i 〉 =
X

j

|pa
j 〉〈eφa

j | bK + V PS − εi|eφa
i 〉.

4. Unscreen local pseudopotential to find V a
loc:

V a
loc(r) = V PS(r)− eVH(r)− eV vale

x (r)
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Recipes for V a
loc (continued)

In order to determine eV vale
x (r) for unscreening the local pseudopotential, the following simplified OEP

relations must be satisfied.
“
bK + V PS − εv

”
|egv〉 =

1

Nv

δEvv
x

δ eψ∗v(r)
− eV vale

x (r)| eψv〉+
X

i

|pa
i 〉[V a

x ]iv −
X
w

λvwO
PAW| eψw〉, (41)

X
v

Nvegv(r) eψv(r) = 0. (42)

〈egv |pa
i 〉 = 0 for all li = lv . (43)

egv(r) ≡ gvalev (r) for r > ra
c . (44)

Most promising method:

• Assume

egv(r) =

8
<
:

rlv+1+s
PM

n=0 Cnrn r ≤ ra
c

gvalev (r) r > ra
c ,

where coefficients {Cn} are determined from matching conditions.

• Determine eV vale
x (r) from egv(r) and other functions.

CCCC7 July 2009 27



Example of basis and projector functions for carbon
Results for rc = 1.3 bohr
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Example of potential functions for carbon
Results for rc = 1.3 bohr
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Summary and Conclusions
⇒ Choosing Ex to have the form of Fock exchange has the advantage of removing

electron self-interaction from the formalism. An orbital dependent correlation
functional Ec can be added to the formalism in a straight-forward way.

⇒ It is possible to define a core electron contribution to the OEP, V core
x (r), which

approximates the valence-core exchange contributions.

⇒ Tests of the frozen core approximation on atomic excitations show controllable
errors. For increased accuracy, semi-core states can be included with the valence
states.

⇒ The PAW formalism is able to treat the multipole moments of the Coulomb integrals
of the Hartree and Fock functionals.

⇒ The PAW-OEP equations can be derived directly from the frozencore approximation.
Full implementation including the calculation of V a

loc(r) looks promising.
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