

Assessment of Accuracy and Efficiency of PAW Datasets in Materials Simulations

N. A. W. Holzwarth and Yan Li

Department of Physics, Wake Forest University, Winston-Salem NC USA

Outline

- Goal -- Reliable and efficient simulations of materials
- Enumeration and testing of factors contributing to the goal
- Example -- cubic and hexagonal boron nitride
- A cautionary tale

Conclusions

- Science is well served by having several independent and public code collaborations
- Big thanks to developers of ABINIT, QUANTUM ESPRESSO,

Acknowledgements: Supported by NSF grant DMR-1507942; computations performed on WFU's DEAC Cluster; thanks to Marc Torrent and Francois Jollet for discussions and advice

5/23/2019

PQ-DFT

Factors contributing to the goal of reliable and efficient materials simulations within the context of density functional theory

- Formalism
 - Optimized norm-conserving pseudopotentials (ONC), D. R. Hamann, PRB 88, 085117 (2013)
 - Projector augmented wave (PAW),
 P. E. Blöchl, PRB 50, 17953 (1994)
- Atomic datasets
- Details of code implementations

Many sources for atomic datasets

Help me	$\langle \cdot \rangle$	Pse		ō	F.A.G	. Contr	ibute I	Papers		About
H 1 H 27 H 27 H 27 H 27 H 27 H 27 H 27 H 27					Select the flavor and format, then click "Download" to get the complete table of pseudos or choose a specific element. "HTML" gives full test results.					2 1 30 He 11 40 13 Heturi
3 2 4 2 3 12 3 4 80 3 4 80 3 4 02 5 00 10 02 5 00 10 02 5 00 10 02 10 0 10 0 10 10 0 10 10 0 10 0 10 0 10 0 10 10 0 10 0 10	\bigcirc	Download	32.7	tests 0.95 5 2.20	5 B all all all all all all all all all a	Gatton	7 2 N 07 40 -8.55 Mitragen	8 0 20 0 20 0 0 20 0 20 0 20 0 20 0 20 0	9 F 2 7 F 21 7 0 M Phote	10 2 Ne 11 Ne 12 Nece
11 3 12 3 Ma 14 Mg 14 03 Sodum Hagresun	Type NC SR (ONCVPSP v0.4) =	XC PBE \$	Accuracy standard \$	Format psp8 \$	ALMINIAM	54 2 Silicon	15 2 P	16 2 S 30 S 400 Suppur	Chickey	18 Ar 10 Ar 10 Argon
19 S 20 3 m K 20 Call Potessian Fotossian	21 4 22 4 23 4 24 Cr SC 12 m T 1 1 2 m V 1 4 Cr Sc 24 m T 1 1 2 m V 1 4 Cr Sc 24 m T 1 1 2 m V 1 4 Cr Sc 24 m T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 4 Mn 40 41 Fe 50 41 Fe 50 41F	27 4 42 CO 13 44 00 Cotati	29 4 CU CU Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu	31 3 Ga 31 3 Gallan Gallan	32 3 Ge	33 3 AS (4 41 - 4.00 Asservic	34 3 58 Se 02 43 4,33 Seeman	35 2 Br 35 Br 35 Brunine	36 27 55 55 55 55 55 55 55 55 55 55 55 55 55
37 5 38 3 Rb ₀₂ 38 3 30 Sr 33 31 Sr 33 34 028 Rubidum Shoetam	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45 4 35 TC 16 36 - 100 36 - 300 Technetum 44 4 36 RU 21 45 - 400 70 - 400 70 Ruteman	45 4 46 3 31 Pd 31 44 21 44 21 50 03 50 03 50 03 Feladen	47 4 37 Ag 53 47 Ag 53 47 Cd 11 57 Cd 11 57 Cd 12 57 Cd 12	49 3 10 11 11 11 0.11 11 0.11 11 0.11	50 3 Sn 11 0 20 10 10 10 10	51 3 36 Sb 55 40 10 44 800 Antenory	62 3 54 Te os 55 10 10 10 10 10 10 10	63 2 31 1 84 31 0 38 locine	64 Xe Xe Xenon
CS 3 66 3 Base CS 3 CS 3 CS 3 CS 3 CS 3 CS 3 CS 3 CS 3	72 4 55 Hf 56 36 0 30 145 0 30 145 0 30 15	75 4 76 4 76 4 30 OS 17 54 30 OS 17 54 410 00 10 1	77 4 78 4 30 Ir 11 78 91 10 020 020 020 1000 Plateet	78 4 22 AU 13 14	81 3 27 TI 31 070 Thailum	82 3 Pb 31 34 53 Lead	83 3 29 Bi 63 01 01 010 010	Polenium	At	Radon

PROJECTOR AUGMENTED-WAVE (PAW) DATASETS

Current version of the library: JTH - v1.1

ATOMPAW

Download source code and example files:

- atompaw-4.1.0.5.tar.gz (5.5mb) 12/2018 Marc Torrent modified abinitinterface.F90 so that (case).abinit file correctly handles the case of pbesol, compatable with abinit using libxc. Note that the (case).abinit datasets are superceded by the (case).xml files.
- atompaw-4.1.0.4.tar.gz (5.5mb) 9/2018 Introduced a check on the charge density sent to the exchange-correlation functionals. This was found to cause trouble when including the compensation charge in the exchangecorrelation functional as is done in the current version of Quantum Espresso and in abinit running in the usexcnhat mode. In these cases, when negative arguments of the exchange-correlation functional is detected, no data file is generated and the output gives the advice to change the magnitude of the

http://www.pseudo-dojo.org/

https://www.abinit.org/psp-tables

http://pwpaw.wfu.edu

5/23/2019

PQ-DFT

Several sources of public code collaborations

https://www.abinit.org/

http://www.quantumespresso.org/

Specific datasets for this study -

ONC – Optimized Norm-Conserving Vanderbilt Pseudopotentials --Hamann, PRB 88, 085117 (2013) as obtained from PseudoDojo JTH -- Projector Augmented Wave (PAW) datasets generated by Jollet *et al.* CPC 185, 1246 (2014) as obtained from abinit.org WFU – PAW datasets as obtained from pwpaw.wfu.edu

Specific codes for this study –

AB – Abinit -- <u>https://www.abinit.org/</u> QE – Quantum Espresso -- <u>http://www.quantum-espresso.org/</u>

All calculations were performed using the local density approximation (LDA) Perdew and Wang, PRB 45, 13244 (1992)

5/23/2019

Example – cubic and hexagonal boron nitride

Most experiments and simulations agree that c-BN is the ground state structure at RTP, however there are a few dissenters

5/23/2019

PQ-DFT

Convergence wrt planewave cutoff "*ecut*" of static lattice energy difference $\Delta E \equiv E_{h-BN} - E_{c-BN}$ where wavefunction planewave expansion includes all reciprocal lattice vectors **G** such that

$$\left|\mathbf{k}+\mathbf{G}\right|^2 \le \frac{2m}{\hbar^2} \left(ecut\right)$$

 $AB \rightarrow Abinit$ QE \rightarrow Quantum Espresso

ONC \rightarrow Optimized Norm-Conserving JTH \rightarrow PAW (Jollet et al.) WFU \rightarrow PAW (WFU)

0.15

ONC/AB

-OONC/OE

G

θ

5/23/2019

120

Note that some of the differences between WFU and JTH are due to the fact that WFU used a Schrödinger solver while JTH used a scalar relativistic solver

 $AB \rightarrow Abinit$ QE \rightarrow Quantum Espresso

ONC \rightarrow Optimized Norm-Conserving JTH \rightarrow PAW (Jollet et al.) WFU \rightarrow PAW (WFU) Convergence wrt planewave cutoff "ecut" of lattice constants of wavefunction

Summary of our results for phonon dispersions:

- All calculations are well converged for *ecut*=80 Ry and nearly identical for the three datasets
- The phonon dispersions of more complicated lattice structures are harder to converge than lattices of high symmetry and are often susceptible to spurious imaginary frequencies.

Example of imaginary phonon modes for h-BN found in literature -- Yu et al. PRB 67, 014108 (2003)

5/23/2019

Note that $F(T) = F^{SL}(T) + F^{vib}(T)$ $F^{SL}(T) \approx F^{SL}(0) \equiv E$ (DFT total energy) $F^{vib}(T) = k_B T \int d\omega g(\omega) \ln \left(2 \sinh \left(\frac{\hbar \omega}{2k_B T} \right) \right)$ Phonon DOS OK 300K $\Delta F_{ONC}(T)$ 0.113 0.100 eV/BN $\Delta F_{WFU}(T)$ 0.114 0.101

> Note that the 0.001 eV difference may be largely due to the different solvers. WFU used a Schrödinger solver and ONC used a scalar relativistic solver.

Cautionary tale about code implementations

ATOMPAW

Download source code and example files:

- atompaw-4.1.0.5.tar.gz (5.5mb) 12/2018 Marc Torrent modified abinitinterface.F90 so that (case).abinit file correctly handles the case of pbesol, compatable with abinit using libxc. Note that the (case).abinit datasets are superceded by the (case).xml files.
- atompaw-4.1.0.4.tar.gz (5.5mb) 9/2018 Introduced a check on the charge density sent to the exchange-correlation functionals. This was found to cause trouble when including the compensation charge in the exchangecorrelation functional as is done in the current version of Quantum Espresso and in abinit running in the usexchhat mode. In these cases, when negative arguments of the exchange-correlation functional is detected, no data file is generated and the output gives the advice to change the magnitude of the

The explanation comes in the different implementations of the exchange-correlation functionals in the two codes. Blochl's formulation: **Used by default in ABINIT** $E_{xc}^{B} = E_{xc}[\tilde{n} + \tilde{n}_{c}] + \sum_{a} \left(E_{xc}[n^{a} + n_{c}^{a}] - E_{xc}[\tilde{n}^{a} + \tilde{n}_{c}^{a}] \right).$ Kresse's formulation: **Used by QUANTUM ESPRESSO** $E_{xc}^{K} = E_{xc}[\tilde{n} + \tilde{n}_{c} + \hat{n}] + \sum_{a} \left(E_{xc}[n^{a} + n_{c}^{a}] - E_{xc}[\tilde{n}^{a} + \tilde{n}_{c}^{a} + \hat{n}^{a}] \right).$

Compensation charge density – can be negative and does not logically belong in evaluation of the exchange-correlation terms. "Correction" ensures that compensation charge is positive.

Comp. Phys. Comm. <u>https://doi.org/10.1016/j.cpc.2019.05.009</u> 5/23/2019 PQ-DFT

Conclusions –

- These comments are meant to be the start of a conversation
- It is important to quantify the numerical accuracy of the calculations and to recognize the sometimes hidden factors that contribute
- In the BN example, the converged differences have the values +/- 0.001 eV
- It is not useful to insistent on numerical tolerance smaller than the accuracy of the level of the theory.
- It is useful to share atomic datasets between codes, but apparently the convergence properties are quite code-dependent
- It is important to train users to be vigilant and skeptical