Ph.D. DISSERTATION DEFENSE ON

First Principles Investigations of Electrolyte Materials in All-Solid-State Batteries

Yan Li

In partial fulfillment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY IN PHYSICS

Committee Members

Natalie Holzwarth, Ph.D., Advisor Abdessadek Lachgar, Ph.D., Chair William C. Kerr, Ph.D. Oana Jurchescu, Ph.D. Timo Thonhauser, Ph.D.

October 21, 2021

□ Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy

Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

 Li_3BO_3 and Li_3BN_2 (I & II)

Yan Li, Zachary D. Hood, and N. A. W. Holzwarth

Phys. Rev. Mater. 5, 085402 & 085403 (2021)

 $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

 $Li_{7.5}B_{10}O_{18}X_{1.5}$ (X = Cl, Br, and I)

□ Research background: General motivation and theoretical tools

□ Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

Li_{7.5}B₁₀O₁₈X_{1.5} (X = Cl, Br, and I)

Motivation of studying battery materials

□ Nobel prize recognition

"The Lithium ion batteries have laid the foundation of a wireless, fossil fuel-free society and are of the greatest benefit to humankind" (words of the Nobel committee)

Continuous challenges

- More demanding applications
- New materials and recipes for battery components
- Balance of capacity, cost, size, and weight

The Nobel Prize in Chemistry 2019

rewards the development of lithium ion battery

John B. Goodenough M. Stanley Whittingham

Akira Yoshino

Whittingham: developed the first functional lithium battery in the early 1970s Goodenough: doubled the battery's potential in the following decade Yoshino: eliminated pure lithium from the battery, making it much safer to use

Photo from https://www.nobelprize.org

Components of a rechargeable Li ion battery

Discharge mode

Role of the electrolyte:

Allow for the transport of Li ions, excluding electrons from the battery and forcing them through the external circuit.

Why solid-state electrolyte?

- Superior safety due to the absence of flammable liquid content
- Excellent physical and chemical stability
- Compatible and stable with Li metal anodes
- Acceptable ionic conductivity

Figure used with permission from J.B. Goodenough. Nat Electron 1, 204 (2018). Copyright @ 2018 Springer Nature

WAKE FOREST How can computer modeling help?

For known and theoretically predicted Li or Na ion solid electrolyte materials (electronically insulating & operate in ground electronic states)

Structures and stabilities

- Construct models for various forms of ideal crystals
- Simulate the static and vibrational properties
- Identify stable and metastable configurations

□ Electrolyte properties

- Mechanisms: vacancy migration, interstitial migration
- Quantitative analysis: defect formation energy, migration energy barrier, ionic conductivity
- Model ideal electrolyte interfaces with anodes

Many-body Schrödinger equation

Exact time-independent Schrödinger equation for a system of N electrons with coordinates $\{r_i\}$ $(i = 1, 2, \dots, N)$ and M nuclei with coordinates $\{R_I\}$ $(I = 1, 2, \dots, M)$

$$irac{\partial}{\partial t}\Psi(\{\mathbf{r}_i\},\{\mathbf{R}_I\})=\hat{H}_{ ext{tot}}\ \Psi(\{\mathbf{r}_i\},\{\mathbf{R}_I\})$$

First principles methods: a series of well-established physical approximations

WAKE FOREST

Born-Oppenheimer approximation

Born-Oppenheimer approximation ($M_I \gg m$)

$$\Psi(\{\mathbf{r}_i\}, \{\mathbf{R}_I\}) = \Psi_{\mathbf{R}}(\{\mathbf{r}_i\})\chi(\{\mathbf{R}_I\})$$
Electron part: treated quantum mechanically

Electronic Schrödinger equation:

$$\hat{H}_{\mathbf{R}} \Psi_{\mathbf{R}}(\{\mathbf{r}_i\}) = E_{\mathbf{R}} \Psi_{\mathbf{R}}(\{\mathbf{r}_i\})$$
 $\hat{H}_{\mathbf{R}} = -rac{\hbar^2}{2m} \sum_i
abla_i^2 - \sum_{i,I} rac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + rac{e^2}{2} \sum_{i
eq j} rac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$

WAKE FOREST

Density functional theory and numerical schemes

Hohenberg-Kohn theorem:

$$E_{\mathbf{R}} = F[
ho(\mathbf{r})]$$
 Reduction of dimensionality (3N $ightarrow$ 3)!

Kohn-Sham equations:

$$E_{\mathbf{R}} = F[\rho(\mathbf{r})] = E_{\mathbf{T}} + E_{\text{ext}} + E_{\mathbf{H}} + E_{\text{xc}}$$
unknown
$$\frac{\delta F[\rho]}{\delta \rho}\Big|_{\rho_{0}} = 0 \quad \text{obtained from independent}$$
electrons approximation
Hohenberg and Kohn, *Phys. Rev.* **136**, B864 (1964)
Kohn and Sham, *Phys. Rev.* **140**, A1133 (1965)
$$\left[-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{xc}(\mathbf{r})\right]\psi_{i}(\mathbf{r}) = \varepsilon_{i}\psi_{i}(\mathbf{r})$$

$$V_{\text{ext}}(\mathbf{r}) = -\sum_{I}\frac{Z_{I}e^{2}}{|\mathbf{r}-\mathbf{R}_{I}|} \quad \nabla^{2}V_{\text{H}}(\mathbf{r}) = -4\pi e^{2}\rho(\mathbf{r}) \quad V_{\text{xc}}(\mathbf{r}) = \frac{\delta E_{\text{xc}}[\rho]}{\delta\rho}\Big|_{\rho(\mathbf{r})}$$

$$\rho(\mathbf{r}) = \sum_{i}|\psi_{i}(\mathbf{r})|^{2} \quad \text{LDA: Perdew and Wang, Phys. Rev. B 45, 13244 (1992) \\ \text{GGA: Perdew et al., Phys. Rev. L 77, 3865 (1996)}$$

To solve DFT equations: Planewave representations; Pseudopotential formulations

Output of DFT calculations

At equilibrium:

$$\mathbf{F}_I \!= -rac{\partial U(\{\mathbf{R}_I\})}{\partial \mathbf{R}_I} = 0$$

- Optimized structural parameters
- Static lattice energy: $U_{SL} = \min U(\{R_I\})$
- Kohn-Sham orbitals and energies
- Interstitial-vacancy pair formation energy: $E_{
 m f} = U_{
 m SL}^{
 m defect} U_{
 m SL}^{
 m perfect}$
- Ionic migration energies: $E_{\rm m}$

Lattice vibrations in crystalline solids

Near equilibrium (Harmonic approximation):

WAKE FOREST

$$U(\{\mathbf{u}_s(l)\})_{harm} = U(\{\mathbf{u}_s(l)\} = 0) + \frac{1}{2} \sum_{ls\alpha} \sum_{mt\beta} C_{st}^{\alpha\beta}(l,m) u_{s\alpha}(l) u_{t\beta}(m) \quad \text{where} \quad C_{st}^{\alpha\beta}(l,m) = \frac{\partial^2 U}{\partial u_s^{\alpha}(l) \partial u_t^{\beta}(m)} \bigg|_0$$

$$M_s(\omega^
u)^2 u^
u_{slpha}({f q}) = \sum_{teta} ilde{C}^{lphaeta}_{st}({f q}) u^
u_{teta}({f q})$$

First principles phonon calculations: Density functional perturbation theory (DFPT)

- Phonon frequencies and eigenvectors at any wavevector
- Phonon dispersions: $\omega^{\nu} \sim \mathbf{q}$ (by specifing a path of high symmetry points)
- Phonon density of states (PDOS): $g(\omega) = \frac{V}{(2\pi)^3} \int d^3q \sum_{\nu=1}^{3N} \delta(\omega \omega^{\nu}(\mathbf{q}))$
- Thermodynamic properties such as the vibrational energy: $F_{vib}(T) = k_B T \int_0^\infty d\omega \ln\left(2\sinh\left(\frac{\hbar\omega}{2k_B T}\right)\right) g(\omega)$

Combined the DFT and DPFT energies

• The Helmholtz free energy: $F(T) = F_{SL}(T) + F_{vib}(T) \approx U_{SL} + F_{vib}(T)$

Ordered system with constant volume

Li/Na ions diffusion mechanisms

High ionic diffusivity in solid conductors requires:

- Rigid framework and high concentration of mobile ions
- Sufficient number of available sites for the mobile ions to occupy
- Continuous channels with low migration barrier energies

Nudged Elastic Band (NEB)

Requires a specific migration pathway as input Simple but limited

Ab Initio Molecular Dynamics (AIMD)

Statistical averaging over all diffusional events Large supercell & long simulation time

$$egin{aligned} \mathrm{MSD}(t,T) &\equiv rac{1}{N_\mathrm{a}} igg< \sum_{i=1}^{N_\mathrm{a}} |\mathbf{R}_i(t) - \mathbf{R}_i(0)|^2 igg
angle \ D_{tr}(T) &= rac{1}{6} \lim_{t o \infty} rac{1}{(t-t_{eq})} \mathrm{MSD}(t-t_{eq},T) \ D_{\mathrm{tr}}(T) &= D_0 e^{-E_a^{\mathrm{MD}}/k_B T} \end{aligned}$$

Nernst-Einstein relation:

$$\sigma(T) = rac{N}{V} rac{q^2}{k_B T} D_{ ext{all}} = rac{1}{H_r} rac{N}{V} rac{q^2}{k_B T} D_{ ext{tr}}$$

Haven ratio: $H_r = D_{\rm tr}/D_{\rm all}$

measures effects of correlated motions

Summary of computational methods

Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) with the modified Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol GGA)

Perdew et al., PRL 100, 136406 (2008)

- □ The projector augmented wave (PAW) formalism with atomic datasets generated by **ATOMPAW** code available at <u>http://pwpaw.wfu.edu</u>
- □ First principles electronic-structure calculations and materials modeling

https://www.abinit.org/

□ Structural visualization, symmetry identification, X-ray patterns

http://www.xcrysden.org/

Version 7.1.2, June 2021 https://stokes.byu.edu/iso/findsym.php

FINDSYM

https://www.ccdc.cam.ac.uk/solution s/csd-core/components/mercury/

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na ₄ P ₂ S ₆ , Li ₄ P ₂ S ₆ , and possible alloy
Yan Li, Zachary D. Hood, and N. A. W. Holzwarth
Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

Li_{7.5}B₁₀O₁₈X_{1.5} (X = Cl, Br, and I)

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

$Na_4P_2S_6$, $Li_4P_2S_6$,	and	possib	le a	lloy
-------------------------------	-----	--------	------	------

Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020) Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

Li_{7.5}B₁₀O₁₈X_{1.5} (X = Cl, Br, and I)

- Kuhn et al.¹ observed that Na₄P₂S₆ crystallizes to form monoclinic space group C2/m (#12)
- Computations using LDA of Rush et al.²: Kuhn structure is metastable
- Recent experimental results of Hood et al.³ also find the C2/m structure
- Using combined approach of NMR and X-ray, the new experimental analysis⁴ on Li₄P₂S₆ concludes the structure to be ordered with space group P321 (#150)
- Theoretically, Na₄P₂S₆ and Li₄P₂S₆ are chemically and structurally related
- Structure and stability of the mixed ions material Li₂Na₂P₂S₆
- Performance of Li₂Na₂P₂S₆ in comparison with Na₄P₂S₆ as solid electrolytes

¹Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014)
²Rush et al., *Solid State Phys.* **286**, 45-50 (2016)
³Hood et al., Manuscript in preparation.
⁴Neuberger et al., *Dalton Trans.* **47**, 11691-11695 (2018)

10/21/2021

Structural and vibrational spectra simulation using PBEsol functional

Material prediction

Conductivity studies

(P₂S₆)⁴⁻ with D_{3d} symmetry

Possible placements of the P₂S₆ building blocks

Hood et al., J. Solid State Ionics 284, 61 (2016).

FOREST

WAKE

UNIVERSITY

Model structures for Na₄P₂S₆ and Li₄P₂S₆

Hexagonal **P321** (#150)¹ 3 formula units / unit cell

¹Neuberger et al., *Dalton Trans.* **47**, 11691-11695 (2018)

Our simulations $\rightarrow P\overline{3}m1$

Hexagonal **P31m** (#162)³ 1 formula unit / primitive unit cell

100% P↑

²Mercier et al., J. Solid State Chem. 43, 151–162 (1982)
³Hood et al., J. Solid State Ionics, 284, 61 (2016)

Monoclinic **C2/m** (#12)⁴ 1 formula unit / primitive unit cell

100% P_↑

Inequiv. Na(Li)

⁴Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014)

S

O P

Simulation of structural stability patterns

 $F(T) = U_{
m SL} + F_{
m vib}(T)$

200

T(**K**)

300

 $Na_4P_2S_6$ ∠*U*_S(eV) *F_{vib}(300K)* (eV) *F(300K)* (eV) Neuberger structure ($P\overline{3}m1$) 0.00 -0.04 -0.04 Kuhn structure (*C2/m*) 0.00 -0.08 -0.08 Simple hex structure (*P31m*) 0.09 0.05 -0.04 $Li_4P_2S_6$ *F_{vib}(300K)* (eV) *F(300K)* (eV) *∆U_{st}*(eV) Neuberger structure (*P3m1*) 0.00 0.19 0.19 Kuhn structure (C2/m) 0.31 0.12 0.43 Simple hex structure (*P31m*) 0.04 0.20 0.24

Summary of simulation energies

*Energies given in units of eV/formula unit with zero set at the static lattice energy for the Neuberger structure.

100

0

500

400

Some details of the vibrational stabilization

Some details of the vibrational stabilization

UN

V E

FOREST

RSITY

WAKE FOREST Structures of the predicted material Li₂Na₂P₂S₆

Replace the (a) g-type or (b) h-type Na ions in the monoclinic Na₄P₂S₆ with Li ions

UNIVERSITY

Reaction pathways for the predicted Li₂Na₂P₂S₆

Possible reaction pathway:

WAKE

UNIVERSITY

FOREST

$$egin{aligned} \mathrm{Na}_4\mathrm{P}_2\mathrm{S}_6 + 2\ \mathrm{Li} &
ightarrow \mathrm{Li}_2\mathrm{Na}_2\mathrm{P}_2\mathrm{S}_6 + 2\ \mathrm{Na} \ \Delta F(T) &= \Delta U_{SL} + \Delta F_{vib}(T) + \Delta F_{ ext{elec}}^{ ext{metal}}(T) \ \Delta &= \Delta^{Products} - \Delta^{Reactants} iggree_{ ext{trivial contribution}}^{ ext{trivial contribution}} \ (10^{-3}\ eV) \end{aligned}$$

Energy changes at T = 300 K in eV:

$$\Delta U_{SL} = -0.29 \ \Delta F_{vib} = -0.06$$
 $igsquire \Delta F = -0.35$

More possible reaction pathways

No.	Reaction: $R \to P$	ΔU_{SL}	ΔF_{vib}	ΔF
1	$Na_4P_2S_6 + 2 Li \rightarrow Li_2Na_2P_2S_6 + 2 Na$	-0.29	-0.06	-0.35
2	$2 \operatorname{Li} + 2 \operatorname{Na} + 2 \operatorname{P}^{a} + 6 \operatorname{S}^{b} \rightarrow \operatorname{Li}_{2} \operatorname{Na}_{2} \operatorname{P}_{2} \operatorname{S}_{6}$	-10.62	0.06	-10.56
3	$\frac{1}{2}$ Na ₄ P ₂ S ₆ + $\frac{1}{2}$ Li ₄ P ₂ S ₆ \rightarrow Li ₂ Na ₂ P ₂ S ₆	0.13	-0.03	0.10
4	$\frac{1}{2} \operatorname{Na}_4 \operatorname{P}_2 \operatorname{S}_6 + \frac{2}{3} \operatorname{Li}_3 \operatorname{PS}_4^{c} + \frac{1}{12} \operatorname{P}_4 \operatorname{S}_4^{d} \to \operatorname{Li}_2 \operatorname{Na}_2 \operatorname{P}_2 \operatorname{S}_6$	-0.24	-0.02	-0.26
5	$\frac{5}{3}$ Na ₃ PS ₄ ^e + $\frac{5}{3}$ Li ₃ PS ₄ ^c + $\frac{1}{6}$ P ₄ S ₄ ^d \rightarrow Li ₂ Na ₂ P ₂ S ₆	-0.48	-0.00	-0.48
6	$\frac{3}{3}$ Na ₃ PS ₄ ^e + $\frac{1}{3}$ P ₄ S ₁₀ ^f + 2 Li \rightarrow Li ₂ Na ₂ P ₂ S ₆	-5.01	0.06	-4.95
7	$\frac{2}{3}$ Li ₃ PS ₄ ^c + $\frac{1}{3}$ P ₄ S ₁₀ ^f + 2 Na \rightarrow Li ₂ Na ₂ P ₂ S ₆	-4.70	0.07	-4.63

Comparison of phonon spectra

Suggested path: Hinuma et al., *Comp. Mat. Sci.* **128**, 140-184 (2017) Discontinuous branches at Γ: Li et al., *J. Phys. Condens. Matter*, **32**, 055402 (2020)

WAKE FOREST

UNIVERSITY

Modeling of Na ion migration mechanisms

WAKE FOREST

UNIVERSITY

Ionic conductivity from MD simulations

VAKE FOREST

UNIVERSITY

Molecular dynamics analysis of the ionic conductivity. The activation energy is obtained from the slope of the corresponding fit line.

Exp: Z. D. Hood, H. Wang, X. Liu, A. S. Pandian, R. Peng, J. K. Keum, and M. Chi (unpublished).

TABLE: NEB and MD results calculated with the PBEsol exchange-correlation functional, in comparison to those of previous work obtained using the LDA exchangecorrelation functional and available experimental data. All energies are given in eV units.

Materials	Analysis	E _m	E_{f}	E _a	
$Na_4P_2S_6$	LDA + NEB ¹	0.30	0.24	0.42	
	PBEsol + NEB	0.25	0.18	0.34	
	PBEsol + MD			0.41	
	Experiment ²			0.39	
Li ₂ Na ₂ P ₂ S ₆	PBEsol + NEB	0.16	0.13	0.23	_
	PBEsol + MD			0.30	

Li₂Na₂P₂S₆ presents better Na ion conductivity than Na₄P₂S₆

10/21/2021

Summary of the project

- □ DFT with PBEsol+harmonic phonon simulations agree with the experimental structures of $Na_4P_2S_6$ (space group *C2/m* found by Kuhn and Hood) and $Li_4P_2S_6$ (space group $P\overline{3}m1$, close to that found by Neuberger).
- □ For $Na_4P_2S_6$ find Na ion migration to take place in planes with the *h*-sites via a vacancy mechanism, involving interstitial d-sites. Both simulations and experiment suggest that $Na_4P_2S_6$ may be a viable solid electrolyte.
- Simulations predict Li₂Na₂P₂S₆ to crystallize with the C2/m structure and to be stable relative to Na₄P₂S₆+2Li-2Na. The mixed alkali electrolyte is predicted to substantially enhance Na ion conductivity.
- □ In addition to experimental verification (or otherwise) of the predictions for $Li_2Na_2P_2S_6$, further MD simulations for both $Na_4P_2S_6$ and $Li_2Na_2P_2S_6$ will help us better understand Na ion conductivity mechanisms.

Phys. Rev. Mater. 4, 045406 (2020)

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}CI$ (x = 0, 1) and related

Li_{7.5}B₁₀O₁₈X_{1.5} (X = Cl, Br, and I)

Q: Why do the phonon dispersion curves for ionic materials have mode "disappearances" near the center of the Brillouin zone?

Physical reasons: Coupling between the vibrational modes and the electromagnetic waves in thelong wavelength limit $\mathbf{q} \rightarrow 0$.Born and Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)

Coupled equations near $q \rightarrow 0$

Uncoupled equations of motion (EOM):

$$(\omega^
u(\mathbf{q}))^2 M_s u^
u_{slpha}(\mathbf{q}) = \sum_{teta} ilde{C}_{slpha,teta}(\mathbf{q}) u^
u_{teta}(\mathbf{q})$$

Modified EOM at small q:

WAKE FOREST

$$M_s rac{\partial^2 w_{s\alpha}(\mathbf{q})}{\partial t^2} = -\sum_{t\beta} \tilde{C}_{s\alpha,t\beta}(\mathbf{q}) w_{t\beta}(\mathbf{q}) + \sum_{\beta} e Z^{*s}_{\alpha\beta} E_{\beta}(\mathbf{q})$$
 Coupling of electric field coupled ionic displacements

Coupling of the lattice displacements to an electric field in the long wavelength range

Born effective charge tensor:

$$\left. e Z^{*s}_{lphaeta} = - rac{\partial^2 U_{SL}}{\partial u_{slpha}({f q}=0)\partial E_eta}
ight|_{u_{slpha}=0,E_eta=0}$$

> Define Born coupling parameters:

$$\mathcal{L}^{
u}_{eta}\equiv\sum_{slpha}{(u^{
u}_{slpha})^{*}Z^{*s}_{lphaeta}}\,;\quad \mathcal{R}^{
u}_{lpha}\equiv\sum_{teta}{Z^{*t}_{lphaeta}u^{
u}_{teta}}$$

> Trial solutions:

$$egin{aligned} \mathbf{W}_{s}(l) &
ightarrow \mathbf{W}_{s}^{0}(\mathbf{q}) \mathrm{e}^{i\mathbf{q}\cdot\mathbf{r}-i\omega t} & ext{where} & \mathbf{w}_{slpha}^{0}(\mathbf{q}) = \sum_{
u} U^{
u}(\mathbf{q}) u_{slpha}^{
u}(\mathbf{q}) \ & egin{aligned} & egin$$

Coupled equations near $q \rightarrow 0$

➤ The electric displacement field:

Substituting the solutions for **w** and **E**, yields:

$$\epsilon_{\alpha\beta}(\omega) = \epsilon_{\alpha\beta}^{\infty} + \frac{4\pi e^2}{\Omega} \sum_{\nu} \frac{\mathcal{R}_{\alpha}^{\nu} \mathcal{L}_{\beta}^{\nu}}{\left((\omega^{\nu})^2 - \omega^2\right) M^{\nu}}$$

$$\epsilon_{\alpha\beta}^0 \equiv \epsilon_{\alpha\beta}(\omega = 0) = \epsilon_{\alpha\beta}^{\infty} + \frac{4\pi e^2}{\Omega} \sum_{\nu} \frac{\mathcal{R}_{\alpha}^{\nu} \mathcal{L}_{\beta}^{\nu}}{(\omega^{\nu})^2 M^{\nu}} \quad \text{-- static dielectric constant}$$

> Maxwell's equations in free space for non-magnetic materials:

$$abla \cdot {f D} = 0$$
 produce longitudinal solutions
 $abla \cdot {f D} = 0$ produce transverse solutions

Longitudinal solutions to the phonon-photon equations

> For the case of longitudinal electric filed:

$$\epsilon_{LL} = \epsilon_{LL}^{\infty} + \frac{4\pi e^2}{\Omega} \sum_{\nu} \frac{\mathcal{R}_L^{\nu} \mathcal{L}_L^{\nu}}{\left((\omega^{\nu})^2 - \omega^2 \right) M^{\nu}} = 0$$

- $n_L = 1$ \longrightarrow $\omega^2 \equiv \omega_L^2 = (\omega^{\nu})^2 + \frac{1}{\epsilon_{LL}^{\infty}} \frac{4\pi e^2}{\Omega M^{\nu}} \mathcal{R}_L^{\nu} \mathcal{L}_L^{\nu}$ (one coupled)
- ▶ General solutions for $n_L > 1$:

$$\hat{\mathbf{q}}$$
 $abla \cdot \mathbf{D} = 0$
 $E_L^0 = \mathrm{E}^0 \cdot \hat{\mathbf{q}}$

$$\sum_{\nu'} \mathcal{G}^L_{\nu\nu'} U^{\nu'} = \omega_L^2 U^{\nu} \quad \text{where} \quad \mathcal{G}^L_{\nu\nu'} = (\omega^{\nu})^2 \delta_{\nu\nu'} + \frac{1}{\epsilon_{LL}^{\infty}} \frac{4\pi e^2}{\Omega M^{\nu}} \mathcal{L}^{\nu}_L \mathcal{R}^{\nu'}_L \quad \text{No dispersion introduced}$$

> Alternative approach

$$\omega^2 M_s w^0_{s\alpha}(\mathbf{q}) = \sum_{t\beta} \tilde{C}^{ ext{tot}}_{s\alpha,t\beta}(\mathbf{q}) w^0_{t\beta}(\mathbf{q})$$
 $ilde{C}^{ ext{tot}}_{s\alpha,t\beta}(\mathbf{q}) = \tilde{C}_{s\alpha,t\beta}(\mathbf{q}) + rac{4\pi e^2}{\Omega \epsilon^\infty_{LL}} Z^{*s}_{L\alpha} Z^{*t}_{\beta L}$
analytic non-analytic

QE/AB: one more step to correct the LO-TO (Longitudinal Optical-Transverse Optical) splitting

Transverse solutions to the phonon-photon equations

For the case of transverse electric filed: $abla imes (
abla imes {f E}) + rac{1}{c^2} rac{\partial^2 {f D}}{\partial t^2} = 0 \ \hat{f T}_2$ $\sum_{T_j} \left(q^2 c^2 \delta_{T_T T_j} - \omega_T^2 \left(\epsilon_{T_i T_j}^\infty + rac{4\pi e^2}{\Omega} \sum_
u rac{\mathcal{R}_{T_i}^
u \mathcal{L}_{T_j}^
u}{\left((\omega^
u)^2 - \omega_T^2
ight) M^
u}
ight)
ight) E_{T_j}^0 = 0$ $n_T=1$ \longrightarrow $\omega_{T_i\pm}^2(\mathbf{q})=rac{q^2c^2+(\omega^
u)^2\epsilon_{T_iT_i}^\infty+\mathcal{A}^
u}{2\epsilon_{T,T_i}^\infty}(1\pm\mathcal{S}^
u(\mathbf{q}))$ (one coupled) E_{T}^{0} $ext{where} \quad \mathcal{S}^{
u}(ext{q}) \equiv \sqrt{1 - rac{4q^2c^2(\omega^
u)^2\epsilon^\infty_{T_iT_i}}{\left(q^2c^2 + (\omega^
u)^2\epsilon^\infty_{T_iT_i} + \mathcal{A}^
u
ight)^2}} \quad ; \quad \mathcal{A}^
u \equiv rac{4\pi e^2}{\Omega M^
u} \mathcal{R}^
u_{T_i} \mathcal{L}^
u_{T_i}$ $\omega_{T_i+}^2(\mathbf{q}pprox 0)=\!(\omega^
u)^2\!+\!rac{1}{\epsilon^\infty_{_{T_T}}}rac{4\pi e^2}{\Omega M^
u}\mathcal{R}^
u_{T_i}\mathcal{L}^
u_{T_i}\!+\!Sq^2c^2$

 \succ General solutions for $n_T > 1$:

$$\mathcal{G}_{
u
u'}^T \equiv (\omega^
u)^2 \delta_{
u
u'}
onumber
onumber$$

Steps of finding all coupled modes along the high symmetry directions:

Run ABNIT or QUANTUM ESPRESSO to obtain the pure phonon modes

Calculate the Born coupling parameters \$\mathcal{L}_{\beta}^{\nu} \equiv \sum_{s\alpha}^{\nu} = \sum_{a\beta}^{\nu} and \$\mathcal{R}_{\alpha}^{\nu} = \sum_{t\beta}^{\nu} Z_{\alpha\beta}^{\nu} u_{t\beta}^{\nu}\$
 Note that for highly symmetric materials, \$\mathcal{R}_{\alpha}^{\nu} = (\mathcal{L}_{\alpha}^{\nu})^{\nu}\$
 Also note that for many modes \$\nu\$, \$\mathcal{R}_{\alpha}^{\nu} = 0\$ and \$\mathcal{L}_{\alpha}^{\nu} = 0\$

- Identify the direction of the wavevector \hat{q} from the modes with non-trivial values of $\mathcal{R}^{\nu}_{\alpha}$ and $\mathcal{L}^{\nu}_{\alpha}$, such modes are also the coupled LO modes
- Analyze the corresponding coupled TO modes

Of the 12 normal modes near q = 0, only 3 couple with EM waves:

Details of phonon modes near q = 0

Phonon-photon coupling to mode #7

FOREST

VERSITY

NAKE

UNI

Mode #7 involves displacements along z (c) axis

$$(\mathbf{3}_{L})^{2} = (\mathbf{3}^{T})^{2} \quad \frac{1}{\omega_{zz}^{\infty}} \frac{4\mathbf{E} e^{2}}{\mathbf{C} \mathbf{M}^{7}} \Big|_{z}^{T} \Big|^{2}$$

$$(\mathbf{3}_{T}^{+})^{2} \approx (\begin{array}{c} 7\\ + \end{array})^{2} \quad \frac{1}{\omega_{zz}^{\infty}} \frac{4\mathbf{E} e^{2}}{\mathbf{C} \mathbf{M}^{7}} \Big|_{z}^{T} \Big|_{Cq}^{2} \qquad 2$$
For $\mathbf{q} \to \mathbf{0}$: $\mathbf{3}_{T}^{-} \approx \frac{\mathbf{q} \mathbf{c}}{\sqrt{\omega_{zz}^{0}}}$
For $\mathbf{q} \gg \mathbf{0}$: $\mathbf{3}_{T}^{-} \mathbf{3} \approx \frac{7}{2}$

Phonon-photon coupling to modes #11 and #12

Modes #11 & #12 involve displacements along x,y (a,b) axes

$$(\mathbf{3}_{L})^{2} = (\mathbf{3}^{11})^{2} \quad \frac{1}{\omega_{xx}^{\infty}} \frac{4\mathbf{E} e^{2}}{\Omega M^{11}} \Big|_{x}^{11} \Big|^{2} (\mathbf{3}_{T}^{+})^{2} \approx (\frac{11}{+})^{2} \quad \frac{1}{\omega_{xx}^{\infty}} \frac{4\mathbf{E} e^{2}}{\Omega M^{11}} \Big|_{x}^{11} \Big|_{Cq}^{2}$$
For $\mathbf{q} \to \mathbf{0}$: $\mathbf{3}_{T}^{-} \approx \frac{\mathbf{qc}}{\sqrt{\omega_{xx}^{0}}}$
For $\mathbf{q} \gg \mathbf{0}$: $\mathbf{3}_{T}^{-} \mathbf{3} \approx \frac{11}{10}$

Note that ... (ω_T) curves represent coupling to mode #12 with transverse contributions associated with longitudinal mode along $\Gamma \rightarrow K$

Summary of the project

- The parameters needed to analyze the phonon-photon coupling can be calculated from first principles using density functional theory (DFT) and density functional perturbation theory (DFPT), available in ABINIT and QUANTUM ESPRESSO, for example. Particularly, the phonon eigenstates evaluated at **q** = 0, the Born effective charge tensors, and the electronic contributions the dielectric permittivity tensor.
- □ Apparent "discontinuities" or mode "disappearances" in the phonon dispersion curves of ionic materials for $\mathbf{q} \rightarrow 0$ in hexagonal and other anisotropic materials are caused by the directional dependence of the Born effective charge tensor.
- The full dispersion curves of the phonon–photon system, including both longitudinal and transverse modes, are continuous functions of wavevector, modifying both the longitudinal and transverse dispersions. This was illustrated for hexagonal boron nitride.

J. Condens. Matter Phys. 32, 055402 (2020)

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li_3BO_3 and Li_3BN_2 (I & II)

Yan Li, Zachary D. Hood, and N. A. W. Holzwarth

Phys. Rev. Mater. 5, 085402 & 085403 (2021)

 $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

 $Li_{7.5}B_{10}O_{18}X_{1.5}$ (X = Cl, Br, and I)

Crystal structures

Monoclinic $P2_1/c$ (#14)¹ 4 formula units / unit cell

Focuses of this project:

 α -Li₃BN₂ Tetragonal P4₂/mnm (#136)² 2 formula units / unit cell

 β -Li₃BN₂ Monoclinic $P2_1/c$ (#14)² 4 formula units / unit cell

Tetragonal I4₁/amd (#141)³ 8 formula units / unit cell

¹Stewner, Acta Crystallogr. section B. **27**, 904 (1971) ²Yamane et al., J. Solid State Chem. **71**, 1-11 (1987) ³Pinkerton and Herbst, J. Appl. Phys. **99**, 113523 (2016)

- Structure correction for α -Li₃BN₂
- Electrolyte properties of pure and doped Li₃BO₃ and β -Li₃BN₂ crystals
- Stability analysis of the ideal interfaces of pure Li_3BO_3 and β - Li_3BN_2 with Li metal anode

Corrected α phase of Li₃BN₂

Harmonic vs. Quasiharmonic

Harmonic: $F(T) = U_{\rm SL} + F_{\rm vib}(T)$

WAKE FOREST

UNIVERSITY

 $\textbf{Qusiharmonic:} \hspace{0.2cm} F^{\mathrm{QH}}(T,a,b,c) = U_{\mathrm{SL}}(a,b,c) + F^{\mathrm{QH}}_{\mathrm{vib}}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\min}(T) = \min_{(a,b,c)} F^{\mathrm{QH}}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\min}(T) = \min_{(a,b,c)} F^{\mathrm{QH}}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\min}(T) = \min_{(a,b,c)} F^{\mathrm{QH}}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\min}(T) = \min_{(a,b,c)} F^{\mathrm{QH}}_{\max}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\min}(T) = \min_{(a,b,c)} F^{\mathrm{QH}}_{\max}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\min}(T) = \min_{(a,b,c)} F^{\mathrm{QH}}_{\max}(T,a,b,c) \hspace{0.2cm}; \hspace{0.2cm} F^{\mathrm{QH}}_{\max}(T,a,b,c) \hspace{0.2cm}; \hspace{$

2x2x1 supercell of β -Li₃BN₂

Metastable interstitial defects (green balls):

- Li₃BO₃: Wyckoff sites 2b with coordinates (0.5, 0.5, 0.5); E_f = 1.25 eV
- Li₃BN₂: Wyckoff sites 4e with coordinates (0.560, 0.279, 0.978); E_f = 1.23 eV

Models of Li-deficient structures:

- Pure crystal with an ideal Li vacancy created by removing a Li ion and compensating with a uniform charge of the opposite sign -- I-vac
- F-doped crystal with the stoichiometry of Li_{3-x}BO_{3-x}F_x (x = 1/12) -- F-doped
- C-doped crystal with the stoichiometry of Li_{3-x}B_{1-x}C_xN₂ (x = 1/16) -- C-doped

Stability analysis:

- $\operatorname{Li}_{3-x}\operatorname{BO}_{3-x}\operatorname{F}_x
 ightarrow (1-2x)\operatorname{Li}_3\operatorname{BO}_3 + 2x\operatorname{Li}_2\operatorname{O} + x\operatorname{B}_2\operatorname{O}_3 + x\operatorname{Li}_F 0.06 \operatorname{eV}$
- $\mathrm{Li}_{3-x}\mathrm{B}_{1-x}\mathrm{C}_x\mathrm{N}_2
 ightarrow (1-x) \mathrm{Li}_3\mathrm{BN}_2 + x \mathrm{Li}_2\mathrm{CN}_2 + 0.05 \ \mathrm{eV}$

Mean squared displacement of Li ions

WAKE FOREST

UNIVERSITY

Ionic conductivities from MD simulations

Materials	Analysis	Ea	σ (T = 300 K)	Materials	Analysis	E _a	σ (T = 300 K)
I-vac Li ₃ BO ₃	MD	0.53	3.2 x 10 ⁻⁷	I-vac Li ₃ BN ₂	MD	0.48	7.2 x 10 ⁻⁷
	NEB	0.38 (bc)			NEB	0.30 (a)/0.81 (bc)	
F-doped Li ₃ BO ₃	MD	0.45	3.4 x 10 ⁻⁶	C-doped Li ₃ BN ₂	MD	0.57	4.8 x 10 ⁻⁸
	NEB	0.72 (bc)			NEB	0.40 (a)/1.02 (bc)	
Polycrystalline Li ₃ BO ₃	Exp ¹	0.51	2.0 x 10-6	Polycrystalline Li ₃ BN ₂	Exp ²	0.66	1.4 x 10-7
Glassy Li ₃ BO ₃	Exp ²	0.60	3.4 x 10-7	Glassy-ceramic Li ₃ BN ₂	Exp ³	0.56	1.1 x 10-7

Exp¹: Ohta et al., J. of Power Sources 238, 53 (2013); Exp²: Yamane et al., J. Solid State Chem. 71, 1 (1987); Exp³: Shigeno et al., Solid State Ion. 339, 114985 (2019)

10/21/2021

Interfaces with Li metal anode

Predicted reactions:	$\Delta F = \sum_{i}$	$\sum F_i^P - \sum_{j \in I}$	$\sum_{j}F_{j}^{R}$
Reaction: $R \rightarrow P$	ΔU _{SL}	ΔF_{vib}	ΔF
${ m Li}_3{ m BO}_3+rac{3}{4}{ m Li} ightarrow rac{3}{4}{ m Li}{ m BO}_2+rac{1}{4}~{ m B}+rac{3}{2}{ m Li}_2{ m O}$	0.19	0.07	0.26
${ m Li}_3{ m BO}_3+{ m Li} ightarrow 2{ m Li}_2{ m O}+rac{1}{3}~{ m B}+rac{1}{3}~{ m B}_2{ m O}_3$	0.64	0.08	0.72
${ m Li}_3{ m BN}_2+3{ m Li} ightarrow2{ m Li}_3{ m N}+{ m B}$	1.91	0.06	1.97
${ m Li}_3{ m BN}_2+rac{3}{2}{ m Li} ightarrow rac{3}{2}{ m Li}_3{ m N}+rac{1}{2}{ m B}+rac{1}{2}{ m BN}$	1.38	0.07	1.45

The interface energy:

$$egin{aligned} &\gamma_{ab}(\Omega,n_b)=rac{E(\Omega,A,n_a,n_b)-n_aE_a-n_bE_b}{2A_i}\ &\gamma_{ab}(\Omega,n_b)=\gamma^{ ext{lim}}_{ab}(\Omega)-\sigma n_b \end{aligned}$$

Where $\boldsymbol{\sigma}$ denotes the strain factor.

a -- electrolyte; b -- Li

 $\sigma(Li_3BO_3/Li) = 19 \text{ meV/}Å^2/Li$ $\sigma(Li_3BN_2/Li) = 0.11 \text{ meV/}Å^2/Li$ -- good compatibility

3x1x1 supercell of Li_3BO_3 and 24 metallic Li ions in [100] direction.

2x1x1 supercell of Li₃BN₂ and 24 metallic Li ions in [001] direction.

Summary of the project

- **□** The imaginary phonon modes near the M point of the Brillouin zone suggested the structural instability of the reported tetragonal phase of α -Li₃BN₂.
- The real α phase has an orthorhombic structure formed with twice as many formula units and very small adjustments of the fractional coordinates compared with the original analysis. Quasi-harmonic corrections further improve the comparisons with experiment.
- **D** Both NEB and MD simulations indicate that the Li ion migration in monoclinic crystals of Li₃BO₃ and β-Li₃BN₂ most likely proceeds via vacancy mechanisms.
- **□** To enhance the ionic conductivity, the practical methods include: 1) Varying the structural perfection to intentionally form poor-crystallinity material containing vacancy-interstitial defect pairs; 2) Substituting F for O in Li_3BO_3 and C for B in β -Li₃BN₂.

 \Box The plausible Li₃BO₃/Li and β -Li₃BN₂/Li interfaces are found to be physically and chemically stable.

Phys. Rev. Mater. 5, 085402 & 085403 (2021)

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020) Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021)

$$Li_{4+x}B_7O_{12+x/2}CI$$
 (x = 0, 1) and related

$$Li_{7.5}B_{10}O_{18}X_{1.5}$$
 (X = Cl, Br, and I)

Mineral boracites $\mathbf{M}_{3}\mathbf{B}_{7}\mathbf{O}_{13}\mathbf{X}$, where M = Mg, Cr, Mn, Fe, Co, Ni, Zn or Cd, and X = Cl, Br or I Li-containing boracites $\mathbf{Li}_{4+x}\mathbf{B}_{7}\mathbf{O}_{12+x/2}\mathbf{X}$, where $0 \le x \le 1$, and X = Cl, Br or I

10/21/2021

Reported structures of Li₄B₇O₁₂Cl from 1977*

Ideal cubic model 8 formula units/cell

Three disordered phases

*Jeitschko et al., Acta Cryst. B33, 2767-2775 (1977)

Above 348 K	γ phase (F $\overline{4}$ 3c, No. 219)		
	Li(24c): 93.7% occupied		
	Li(32e): 31.6% occupied		

310 – 348 Kβ phase (P43c, No. 218)Ideal F43c modelLi(24c): 96.7% occupiedLi(32e): 27.8% occupied

 Room T
 α phase (Exp. R3, No. 146)

 Ideal F43c model
 Li(24c): 100% occupied

 Li(32e): 25% occupied
 Li(32e): 25% occupied

* The real space groups of the α and β phases are subgroups of F43c.

** The atomic positions for both α and β phases are not known in experiment

Find the ground state structure for α -Li₄B₇O₁₂Cl

Conventional cell of F43c model

Li(24c): 100% occupied Li(32e): 25% occupied Perform geometry optimizations for 28 unique configurations in the primitive cell setting

The calculation finds four identical lowest-energy configurations with the **rhombohedral R3c (No. 161)** symmetry

α -Li₄B₇O₁₂Cl in rhombohedral R3c structure

Face-centered primitive cell 2 formula units

 $egin{aligned} \mathbf{a}_{\mathrm{p}} &= (\mathbf{a}_{\mathbf{c}} + \mathbf{b}_{\mathbf{c}})/2 = a_p(\hat{\mathbf{x}}(\lambda_p + \mu_p) + \hat{\mathbf{y}}(\lambda_p + \mu_p) + \hat{\mathbf{z}}(\lambda_p - 2\mu_p)) \ \mathbf{b}_{\mathbf{p}} &= (\mathbf{b}_{\mathbf{c}} + \mathbf{c}_{\mathbf{c}})/2 = a_p(\hat{\mathbf{x}}(\lambda_p - 2\mu_p) + \hat{\mathbf{y}}(\lambda_p + \mu_p) + \hat{\mathbf{z}}(\lambda_p + \mu_p)) \ \mathbf{c}_{\mathbf{p}} &= (\mathbf{a}_{\mathbf{c}} + \mathbf{c}_{\mathbf{c}})/2 = a_p(\hat{\mathbf{x}}(\lambda_p + \mu_p) + \hat{\mathbf{y}}(\lambda_p - 2\mu_p) + \hat{\mathbf{z}}(\lambda_p + \mu_p)) \end{aligned}$

$$egin{aligned} \lambda_p \equiv rac{\sqrt{1+2\cos heta_p}}{3} ext{ and } \mu_p \equiv rac{\sqrt{1-\cos heta_p}}{3} ext{ and } a_p = rac{a_c}{\sqrt{3-2\cos(heta_p)}} \ \cos(heta_p) = rac{1+3\cos(heta_c)}{2(1+\cos(heta_c))} \end{aligned}$$

$$a_c = b_c = c_c$$
 and $\alpha = \beta = \gamma = \theta_c \approx 90^\circ$

 $egin{aligned} \mathbf{a_c} &= a_c(\hat{\mathbf{x}}(\lambda_c+2\mu_c)+\hat{\mathbf{y}}(\lambda_c-\mu_c)+\hat{\mathbf{z}}(\lambda_c-\mu_c)) \ \mathbf{b}_c &= a_c(\hat{\mathbf{x}}(\lambda_c-\mu_c)+\hat{\mathbf{y}}(\lambda_c+2\mu_c)+\hat{\mathbf{z}}(\lambda_c-\mu_c)) \ \mathbf{c_c} &= a_c(\hat{\mathbf{x}}(\lambda_c-\mu_c)+\hat{\mathbf{y}}(\lambda_c-\mu_c)+\hat{\mathbf{z}}(\lambda_c+2\mu_c)) \end{aligned}$

$$egin{aligned} \lambda_c &\equiv rac{\sqrt{1+2\cos heta_c}}{3} ext{ and } \mu_c &\equiv rac{\sqrt{1-\cos heta_c}}{3} \ &\cos(heta_c) &= rac{2\cos(heta_p)-1}{3-2\cos(heta_p)} \end{aligned}$$

α -Li₄B₇O₁₂Cl in rhombohedral R3c structure

Lattice parameters and Li ion fractional coordinates for the R3c structure of α -Li₄B₇O₁₂Cl, comparing calculated results with the experimental measurements.

Li ₄ B ₇ O ₁₂ Cl	$\mathbf{a} = \mathbf{b} = \mathbf{c} (\mathbf{A})$	$\alpha = \beta = \gamma \text{ (deg)}$
Cal. R3c	12.137	90.108
Exp.* R3	12.141	90.084
Exp.* F43c model	12.141	90.000

Cal. R3c				Exp. F43c model			
Atom	Wyck	f(x, y, z) (conv.)	Occ.	Atom	Wyck	f (x , y , z)	Occ.
Li(1)	4x6 b	(0.030, 0.245, 0.245)	1.00	Li(1)	24 c	(0.000, 0.250, 0.250)	1.00
Li(2)	4x2 a	(0.865, 0.865, 0.865)	1.00	T:())	22		0.05
Vac. Li	4x6 b	(0.633, 0.635, 0.873)	0.00	L1(2)	32 e	(0.8/1, 0.8/1, 0.8/1)	0.25

*Experimental data taken from Jeitschko et al., Acta Cryst. B. 33, 2767-2775 (1977)

10/21/2021

Phase stability of α -Li₄B₇O₁₂Cl

VAKE FOREST

UNIVERSITY

Li₂O-B₂O₃-LiCl phase diagram at 0 K and 0 atm

Reaction energy: $\Delta U_{SL} = U_{SL} - \sum x_i U_{SL}^i$ Where U_{SL} is the total static energy per formula unit of a specific compound. x_i with $i = \text{Li}_2\text{O}$, B_2O_3 , and LiCl represents the compositional ratio of each reference phase for which the total static energy per formula unit is denoted by U_{SL}^i .

Phonon dispersion curves and projected density states of $Li_4B_7O_{12}CI$ with frequencies ranging from 0 ~ 1440 cm⁻¹.

Brillouin zone diagram: Hinuma et al., *Comp. Mat. Sci.* **128**, 140-184 (2017). Note that the rhombohedral lattice is described by an equivalent hexagonal system.

NEB analysis for α -Li₄B₇O₁₂Cl

 $E_{hb} < E_{ha} < E_{mb}$ mb C, b

hb: host b-type site; **ha:** host a-type site**mb:** metastable b-type site (native vacancy)

→ The concerted migration mechanism reduces the energy barrier for Li ion conduction in α -Li₄B₇O₁₂Cl.

NEB: ¹Jónsson et al., *in Classical and Quantum Dynamics in Condensed Phase Simulations*, World Scientific, Singapore (1998) ²Henkelman et al., *J. Chem. Phys.* **113**, 9901-9904 (2000)

Results of molecular dynamic simulations

• Time-dependent positions of Li ions

Model of $Li_4B_7O_{12}Cl$ crystal cell with superposed Li positions of molecular dynamics simulation at $\langle T \rangle = 1162$ K.

Site occupancy factor: $f_s(t) = \frac{1}{N_s^{Li}} \sum_{i=1}^{N^{Li}} n_s^i(t), i = 1, 2, \dots, N^{Li}$ **Time-averaged:** $\bar{f}_s(t) = \frac{1}{t} \int_0^t f_s(t') dt'$ 873 K — 967 K — 1064 K — 1162 K 1.0 0.9 0.8 T+ 0.7 Top: host 6b (24*c*-like) sites Bottom: host 2a + vacant 6b (32*e*-like) sites 0.5 T+ 0.4 0.3 0.2[∟]0 10 20 30 50 60 70 80 90 100 110 120 40 t (ps) *Recall: the three reported forms α (T < 310 K), β (310 K <T <

348 K), γ (T > 348 K) mainly differ in lattice site occupancy.

Results of molecular dynamic simulations

	6-	I	I		Cal:	Li ₄ B ₇ O ₁₂ Cl Li _. B ₋ O _{.2} Cl	(Ref. A)	
((m))	2	POB-E			ө—ө Exp: � → Exp:	$Li_4B_7O_{12}Cl$ $Li_4B_7O_{12}Cl$	(Ref. B) (Ref. C)	-
(K S/	0-			G			€	
(log(-2 – -4 –					$\gamma \rightarrow \beta$	B	
To)	-6						μ>λα .	- - - L
log(-8 - 10 -	Cal: L Exp: L	i ₅ B ₇ O _{12.5} Cl .i ₅ B ₇ O _{12.5} Cl (R	ef. A)				
-	12							
	0.5	1	1.5 1(2)00/T (2.5 1/K)	3		3.5

Ref. A: Cales *et al., Solid State Commun.* **24**, 323 (1977) Ref. B: Jeitschko *et al., Acta Cryst.* B. **33**, 2767-2775 (1977) Ref. C: Tan *et al., ACS Appl. Energy Mater.* **2**, 5140 (2019).

Materials	Analysis	Samples	E _a (eV)	σ (T = 300 K, S/cm)
	Cal.	Ideal	0.34	3.83 x 10 ⁻⁴
	Exp: Ref (A) Polycrystalline		0.53	1.00 x 10 ⁻⁷
Li ₄ B ₇ O ₁₂ Cl	Exp: Ref (B) Single crystal		0.49	0.98 x 10 ⁻⁷
	Exp: Ref (C)	Polycrystalline	0.14	3.68 x 10 ⁻⁴
	Cal.	Ideal	0.84	6.58 x 10 ⁻¹²
Li ₅ B ₇ O _{12.5} Cl*	Exp: Ref (A) Polycrystalline		1.03	2.14 x 10 ⁻¹⁴

$$\sigma(T)=
ho q^2rac{D_{tr}(T)}{k_BTH_r}~~$$
 with $H_r=1$, $D_{tr}(T)=D_0e^{-E_a^{
m MD}/k_BT}$

*The ordered $Li_5B_7O_{12.5}CI$ has a similar B-O framework with $Li_4B_7O_{12}CI$ but a different ordering of Li ions.

Ionic substitutions in α -Li₄B₇O₁₂Cl

Li₄B₇O₁₂Cl Original material

Rhombohedral R3c

 $\begin{array}{l} a_{p}=b_{p}=c_{p}=8.574 \ \text{\AA} \\ \alpha_{p}=\beta_{p}=\gamma_{p}=60.124^{\circ} \\ a_{c}=b_{c}=c_{c}=12.137 \ \text{\AA} \\ \alpha_{c}=\beta_{c}=\gamma_{c}=90.108^{\circ} \end{array}$

Li₄Al₃B₄O₁₂Cl Realized in experiment*

Rhombohedral R3c

 $\begin{array}{l} a_{p}=b_{p}=c_{p}=9.133 \ \text{\AA} \\ \alpha_{p}=\beta_{p}=\gamma_{p}=61.194^{\circ} \\ a_{c}=b_{c}=c_{c}=13.033 \ \text{\AA} \\ \alpha_{c}=\beta_{c}=\gamma_{c}=91.022^{\circ} \\ ^{*} \text{Kajihara et al., Bull. Chem. Soc. Jpn.} \end{array}$

90, 1279–1286 (2017)

Li₄B₇S₁₂Cl Predicted in this work

Rhombohedral R3c $a_n = b_n = c_n = 10.584 \text{ Å}$

$$\alpha_{p} = \beta_{p} = \gamma_{p} = 59.704^{\circ}$$
$$a_{c} = b_{c} = c_{c} = 14.934 \text{ Å}$$
$$\alpha_{c} = \beta_{c} = \gamma_{c} = 89.743^{\circ}$$

 $B(1) \rightarrow AI \& O \rightarrow S$

Li₄Al₃B₄S₁₂Cl Predicted in this work

Rhombohedral R3c

 $\begin{array}{l} a_{p}=b_{p}=c_{p}=11.386 \text{ Å} \\ \alpha_{p}=\beta_{p}=\gamma_{p}=68.601^{\circ} \\ a_{c}=b_{c}=c_{c}=15.933 \text{ Å} \\ \alpha_{c}=\beta_{c}=\gamma_{c}=88.771^{\circ} \end{array}$

Comparison of diffusional properties

NEB energy diagram of concerted migrations

Mean squared displacement vs. time interval

Li₄Al₃B₄O₁₂Cl Kajihara *et al., Bull. Chem. Soc. Jpn.* **90**, 1279–1286 (2017)

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{O}_{12}\mathrm{Cl} \rightarrow 1/2\ \mathrm{Li}_4\mathrm{B}_7\mathrm{O}_{12}\mathrm{Cl} + 1/2\ \mathrm{Li}\mathrm{B} + 1/2\ \mathrm{Li}\mathrm{Cl}\mathrm{O}_4 + \mathrm{Li}\mathrm{Al}\mathrm{O}_2 + 2\ \mathrm{Al}\mathrm{O} - 14.29\ \mathrm{eV}$

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{O}_{12}\mathrm{Cl} \rightarrow 1/2\ \mathrm{Li}_4\mathrm{B}_7\mathrm{O}_{12}\mathrm{Cl} + 1/2\ \mathrm{Al}_5\mathrm{BO}_9 + 1/2\ \mathrm{Al}\mathrm{ClO} + \mathrm{Li}_2\mathrm{O} - 0.8\ \mathrm{eV}$

Li₄B₇S₁₂Cl (proposed)

 $Li_4B_7S_{12}Cl \rightarrow 3~Li + 7~B + 12~S + LiCl - 14.38~eV$

 $Li_4B_7S_{12}Cl \rightarrow Li_3BS_3 + 3\ B_2S_3 + LiCl + 0.46\ eV$

Li₄Al₃B₄S₁₂Cl (proposed)

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{S}_{12}\mathrm{Cl} \rightarrow 3\ \mathrm{Li} + 3\ \mathrm{Al} + 4\ \mathrm{B} + 12\ \mathrm{S} + \mathrm{Li}\mathrm{Cl} - 18.35\ \mathrm{eV}$

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{S}_{12}\mathrm{Cl} \rightarrow 3/2\ \mathrm{Li}_2\mathrm{S} + 3/2\ \mathrm{Al}_2\mathrm{S}_3 + 2\ \mathrm{B}_2\mathrm{S}_3 + \mathrm{Li}\mathrm{Cl} + 0.87\ \mathrm{eV}$

Phonon calculations

Summary of the project

- The ground state structure of the room-temperature form of Li₄B₇O₁₂Cl is identified to have rhombohedral R3c symmetry. The phase is estimated to be stable from the analysis of the convex hull approach and of the phonon spectrum.
- □ The NEB calculations indicate that Li ion migration in Li₄B₇O₁₂Cl most likely proceeds via concerted migration mechanisms involving two host sites and one natural vacancy.
- □ The room-temperature ionic conductivity of Li₄B₇O₁₂Cl, calculated from the MD simulation results, is on the order of 10⁻⁴ S/cm, which is in good agreement with the recent experiment measurement for pure polycrystalline samples.
- □ Consistent with the recent experimental results, our preliminary calculations also find reduced Li ion migration barriers in the partially B-replaced compound Li₄Al₃B₄O₁₂Cl. The studies on predicted compounds Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl also suggest improved Li ion conducting performance compared with Li₄B₇O₁₂Cl.
- \Box The chemical stabilities of the Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl need further investigation.

Manuscript in preparation

WAKE FOREST

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

Li_{7.5}B₁₀O₁₈X_{1.5} (X = Cl, Br, and I)

New fast Li ion electrolytes Li₇₅B₁₀S₁₈X₁₅

$Li_{7.5}B_{10}S_{18}X_{1.5}$ (X = Cl, Br, I)

Monoclinic C2/c (No. 15) **Disordered Li and X sites** Room-T $\sigma \sim mS/cm$

GDCh

Communications

Ion Conductivity Very Important Paper

How to cite: Angew. Chem. Int. Ed. 2021, 60, 6975-6980 doi.org/10.1002/anie.202013339 International Edition: German Edition: doi.org/10.1002/ange.202013339

Fast Li-Ion Conductivity in Superadamantanoid Lithium Thioborate Halides

Kavish Kaup, Abdeljalil Assoud, Jue Liu, and Linda F. Nazar*

WAKE FOREST

UNIVERSITY

[*] K. Kaup, A. Assoud, L. F. Nazar

Department of Chemistry, Department of Chemical Engineering and the Waterloo Institute for Nanotechnology, University of Waterloo 200 University Ave W, Waterloo, Ontario N2L 3G1 (Canada) E-mail: lfnazar@uwaterloo.ca

I. Liu

Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 (USA)

lithium and halide anion disorder. The phases are nonstoichiometric, adopting slightly varying halide contents within the materials. These new superadamantanoid materials exhibit high ionic conductivities up to 1.4 mScm⁻¹, which can be effectively tuned by the polarizability of the halide anion within the channels.

of supertetrahedral clusters (also antanoid) $B_{10}S_{20}$ structural units. ructures were observed in lithium licates,[11,12] lithium nitridophoser thioborates such as Ag₆B₁₀S₁₈ hany other sulfide-based materietworks are of interest because the anions to distribute into the void For frameworks with a large void akly bonded to the surrounding tion mobility within the structure.

For such materials, the highest reported room-temperature ionic conductivity is only $4 \times 10^{-4} \,\mathrm{S \, cm^{-1}}$ for sodium phosphidosilicates,^[11] and $\approx 10^{-7} \, \mathrm{S \, cm^{-1}}$ for lithium phosphidosilicates.^[21] An ionic conductivity greater than 10⁻⁴ Scm⁻¹ is often considered fast, but at least 10⁻³ Scm⁻¹ is necessary to achieve practical solid-state batteries.[22]

Figure 3. A) Li₂ B₁₀S₁₈I₁₅ structure with lithium and iodine in the channels. B) Average structure (refined from NPD at 300 K) and C) local structure (refined from NPDF at 290 K) of iodine in the tunnels. The iodide ions distributed through the channel are positioned in groups, as indicated by the dashed boxes in (B).

Check fo

Angewandte

Comparison of the current and previous projects

Similarities –

- Same atomic elements
- B-S framework + large voids for Li and Cl
- Favorable Li ion conductivity

Differences –

Li_{7.5}B₁₀S₁₈Cl_{1.5}

- Experimentally realized; chemically stable
- Framework based on BS₄ tetrahedra
- Low symmetry structure (monoclinic)
- Large voids without obvious structure
- 148 ions in MD simulation cell (primitive C2/c lattice)

- Not (yet) experimentally realized; chemical reactivity
- Framework based on BS₄ + BS₃ units
- Based on ordered rhombohedral structure
- Structured voids
- 196 ions in MD simulation cell (similar to conventional FCC lattice)

Structure of Li_{7.5}B₁₀S₁₈Cl_{1.5}

From experiment

WAKE FOREST

UNIVERSITY

Li_{7.5}B₁₀S₁₈Cl_{1.5} from Kaup *et al.* (2021) Monoclinic C2/c (No. 15)

From computation

Li_{7.5}B₁₀S₁₈Cl_{1.5} from DFT optimization Monoclinic C2/c (No. 15)

Simulation vs. experiment structures

Comparison of lattice parameters

Numerical comparison of conventional lattice parameters of optimized ("cal") and experimental (Kaup et al.)) $Li_{7.5}B_{10}S_{18}X_{1.5}$ (X=Cl, Br, I).

NIVERSITY

U

OREST

Pair distribution analysis: From neutron scattering (Kaup *et al*.)

From molecular dynamics simulations (This work at 400 K over 30 ps)

Based on DFT static lattice calculations, several decomposition pathways indicate endothermic reactions at equilibrium and suggest chemical stability of Li_{7.5}B₁₀S₁₈X_{1.5}

$$Li_{7.5}B_{10}S_{18}CI_{1.5} \rightarrow 1.5 LiCl + 5 B_2S_3 + 3 Li_2S - 0.8 eV$$

 $Li_{7.5}B_{10}S_{18}CI_{1.5} \rightarrow 1.5 LiCl + 4 B_2S_3 + 2 Li_3BS_3 - 1.0 eV$

$$Li_{7.5}B_{10}S_{18}Br_{1.5} \rightarrow 1.5 LiBr + 5 B_2S_3 + 3 Li_2S - 0.9 eV$$

 $Li_{7.5}B_{10}S_{18}Br_{1.5} \rightarrow 1.5 LiBr + 4 B_2S_3 + 2 Li_3BS_3 - 1.1 eV$

$$Li_{7.5}B_{10}S_{18}I_{1.5} \rightarrow 1.5 LiI + 5 B_2S_3 + 3 Li_2S - 1.0 eV$$

 $Li_{7.5}B_{10}S_{18}I_{1.5} \rightarrow 1.5 LiI + 4 B_2S_3 + 2 Li_3BS_3 - 1.2 eV$

WAKE FOREST UNIVERSITY Assessing ion mobility in Li_{7.5}B₁₀S₁₈X_{1.5}

Define a probability density* for the mobile ions

$$p^a(\mathbf{r}) = rac{1}{k_{ ext{max}}}\sum_{k=1}^{k_{ ext{max}}}\sum_{i\in a}^{N^a}\delta(\mathbf{r}-\mathbf{R}^a_i(t_k))$$

 N^a -- Number of ions of type a within the simulation cell $\mathbf{R}^a_i(t_k)$ -- Trajectories of ion i at sampling time t_k k_{\max} -- Number of time steps

In practice, the Gaussian shape

$$\delta({f s})pprox rac{1}{ig(2\pi\sigma^2ig)^{3/2}}e^{-s^2/2\sigma^2}$$
 with σ chosen as 0.2 Å

*He, Zhu, and Mo, *Nat. Comm.* **8**, 15893 (2017)
Isosurface plots of P^a(r)

*Visualized along the c-axis from MD simulations at ~800 K

WAKE FOREST

UNIVERSITY

For an MD simulation at average temperature *T* :

$$\mathrm{MSD}(\tau,T) = \frac{1}{N^{\mathrm{Li}}} \left\langle \sum_{i=1}^{N^{\mathrm{Li}}} \left| \mathbf{R}_{i}^{\mathrm{Li}}(t+\tau) - \mathbf{R}_{i}^{\mathrm{Li}}(t) \right|^{2} \right\rangle_{t}$$

which is related to the tracer diffusion:

$$D_{tr}(T) = \lim_{\tau \to \infty} \left(\frac{1}{6\tau} \text{MSD}(\tau, T) \right).$$
 The Nernst-

Einstein relation then leads to an estimate of

the ionic conductivity: $\sigma(T) = \frac{N^{\text{Li}}}{V} \frac{e^2 D_{tr}(T)}{k_B T H_r},$

where V = volume, $k_B =$ Boltzmann constant, e = elementary charge, $H_r =$ Haven ratio. It is also reasonable to assume an Arrhenius behavior for the tracer diffusion with activation energy E_a : $D_{tr}(T) = D_{ref} e^{-E_a/k_B T}$.

Preliminary MD results for Li ion conductivity

Histogram of numbers of Li ion hops within 100 time intervals of 0.5 ps each at ~800 K

Each hopping event was assessed on the basis of the equilibrium sites of the optimized lattice. A hopping event was tabulated at each arrival time of an ion at a new site.

Further assessment of Li ion correlations

 $Li_{7.5}B_{10}S_{18}X_{1.5} (X = CI, Br, I)$

Number of visitors of each distinct Li site evaluated from MD simulation trajectories at 800 K

Summary of the project

- Computationally determined plausible idealized structures for the Li_{7.5}B₁₀S₁₈X_{1.5} (X = Cl, Br, I) materials developed by Kaup *et al.* (2021), consistent with published X-ray and neutron diffraction analyses.
- Computed equilibrium total energies suggest chemical stability against decomposition.
- □ MD simulations show remarkable 3-dimensional Li ion mobility within the B₁₀S₁₈ framework at temperatures close to 400 K and higher.
- Preliminary analysis of detailed MD trajectories suggests concerted mechanisms for the Li ion motions primarily within the void cavities.

Manuscript in preparation

Details: WFU Physics colloquium on Nov. 4, 2021 from 4:00 pm - 5:00 pm ESD

First-author publications

- Y. Li and N. A. W. Holzwarth, First principles simulations to understand the structural and electrolyte properties of idealized Li_{7.5}B₁₀S₁₈X_{1.5} (X = Cl, Br, I), in preparation.
- 2. D. Lynch, Y. Li (co-first), and N. A. W. Holzwarth, Computational investigation of the structural and electrolyte properties of the boracite materials related to Li₄B₇O₁₂Cl, in preparation.
- **3. Y. Li** and N. A. W. Holzwarth, First principles simulations of Li boracites $Li_4B_7O_{12}CI$ and $Li_5B_7O_{12.5}CI$, to be submitted.
- 4. Y. Li, Z. D. Hood, and N. A. W. Holzwarth, Computational study of Li₃BO₃ and Li₃BN₂ I: Electrolyte properties of pure and doped crystals, *Physical Review Materials* 5, 085402 (2021). DOI: https://doi.org/10.1103/PhysRevMaterials.5.085402
- 5. Y. Li, Z. D. Hood, and N. A. W. Holzwarth, Computational study of Li₃BO₃ and Li₃BN₂ II: Stability analysis of pure phases and of model interfaces with Li anodes, *Physical Review Materials* 5, 085403 (2021). DOI: https://doi.org/10.1103/PhysRevMaterials.5.085403
- **6. Y. Li**, Z. D. Hood, and N. A. W. Holzwarth, Computational (Re)investigation of the Structural and Electrolyte Properties of Li₄P₂S₆, Na₄P₂S₆, and Li₂Na₂P₂S₆, *Physical Review Materials* **4**, 045406 (2020). DOI: <u>https://doi.org/10.1103/PhysRevMaterials.4.045406</u>
- 7. Y. Li, W. C. Kerr, and N. A. W. Holzwarth, Continuity of phonon dispersion curves in layered ionic materials, Journal of Physics: Condensed Matter 32, 055402 (2020). DOI: https://doi.org/10.1088/1361-648X/ab4cc1

Resources of publications and presentations

http://users.wfu.edu/natalie/recentpubs.html

Link to Google Scholar Profile

UNIVERSITY

WAKE FOREST

Computational study of Li₃BO₃ and Li₃BN₂ I: Electrolyte properties of pure and doped crystals and II: Stability analysis of pure phases and of model interfaces with Li anodes Yan Li, Zachary D. Hood, and N.A.W. Holzwarth Physical Review Materials 5, 085402 (2021) (I) and Physical Review Materials 5, 085403 (2021) (II) Local copies: I and II

"Computational and experimental (re)investigation of the structural and electrolyte properties of Li₄P₂S₆, and Na₄P₂S₆, and Li₂Na₂P₂S₆" Yan Li, Zachary D. Hood, and N.A.W. Holzwarth <u>Physical Review Materials 4, 045406 (2020)</u> Local copy

"Continuity of phonon dispersion curves in layered ionic materials " Yan Li, W. C. Kerr, and N. A. W. Holzwarth Journal of Physics: Condensed Matter 32 055402 (2019) (local copy)

"Updated comments on projector augmented wave (PAW) implementations within various electronic structure code packages" N. A. W. Holzwarth *Computer Physics Communications* **234** 25-29 (2019) https://doi.org/10.1016/j.cpc.2019.05.009 (local copy)

http://users.wfu.edu/natalie/presentations.html

- Presentation by Yan Li at the <u>240th ECS Meeting_Oct</u> 10-14, 2021 -- <u>"Computational Investigation of Li Boracite Li₄B₇O₁₂Cl and Related <u>Materials as Solid Electrolytes " (link to abstract)</u></u>
- Presentation by N. A. W. Holzwarth at the <u>240th ECS Meeting</u> Oct 10-14, 2021 -- "First Principles Simulations to Understand the Structural and Electrolyte Properties of Idealized Li_{7.5}B₁₀S₁₈X_{1.5} (X = Cl, Br, I) -- Li Superionic Conductors Recently Identified in the Experimental Literature " (link to abstract)
- Presentation by N. A. W. Holzwarth at the Electronic Structure Discussion Group at Cambridge University invited by WFU alum Angela Harper -- June 9, 2021 -- <u>First principles simulations of electrolyte materials with a view toward all solid-state battery technology -- Li₄P₂S₆, <u>Na₄P₂S₆, and possible alloys</u>
 </u>
- Presentation by N. A. W. Holzwarth at the <u>10th ABINIT International Developer Workshop</u> May 31-June 4, 2021 -- <u>Progress on self-consistent meta-gga PAW datasets from ATOMPAW (PP slides)</u>
- Presentation by Yan Li at the <u>March 2021 APS meeting -- "Li₃BO₃ and Li₃BN₂: Computational study of structural and electrolyte properties of pure and doped crystals" (link to abstract)
 </u>
- Annotated slides that would have been presented by Yan Li at the cancelled March 2020 APS meeting -- "Prediction and analysis of a sodium ion electrolyte: Li₂Na₂P₂S₆"

Acknowledgements

Photo taken with → Dr. Hood and Prof. Holzwarth at ECS meeting in Atlanta, GA in Oct. 2019

Advisor:

Prof. Natalie A. W. Holzwarth

Dissertation committee:

Prof. Abdessadek Lachgar, Prof. William C. Kerr Dr. Oana Jurchescu, Dr. Timo Thonhauser

Experimental collaborator:

Dr. Zachary D. Hood (Argonne National Laboratory)

Former and current graduate students:

Jason Howard, Ahmad Al-Qawasmeh, Cory Lynch

DEAC team:

Adam Carlson, Cody Stevens, Sean Anderson

WFU physics community:

Students, faculty, and staff

Folks in China:

Family, friends, and CUMT physics

Thank you for your attending!

10/21/2021

Google image