First principles simulations of electrolyte materials with a view toward all solid-state battery technology -- $Li_4P_2S_6$, $Na_4P_2S_6$, and possible alloys

> Yan Li¹, Zachary Hood², and <u>Natalie Holzwarth¹</u> ¹Department of Physics, Wake Forest University ²Electrochemical Materials Laboratory, MIT; now at **Argonne National Labs**

WFU effort supported by Deac Cluster and NSF Grants DMR-1507942 and 1940324.

Contributions from previous students including Larry Rush and Cameron Kates are also gratefully acknowledged.

Ref: PRM 4, 045406 (2020)

Electrochemical Society in Atlanta, GA Oct. 12-17, 2019

Outline

- Motivation
- Experimental story
- Computational story
- > Outlook

Motivation

- Research on battery materials
- The case for all solid state batteries
- > Challenges for realistic (idealistic??) computer modeling

Research on battery materials

Materials components of a Li or Na ion battery

Role of the electrolyte is to allow for the transport of Li+ or Na+ ions, excluding electrons from the battery and forcing them through the external circuit.

The case for all solid state batteries

Development of LiPON electrolyte films at Oak Ridge National Laboratory

Solid State Ionics 53-56 (1992) 655-661 North-Holland

Sputtering of lithium compounds for preparation of electrolyte thin films

N.J. Dudney, J.B. Bates, R.A. Zuhr and C.F. Luck Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6030, USA

and

Motivation

J.D. Robertson

Department of Chemistry, University of Kentucky, 800 Rose St. Lexington, KY 40506-0055, USA

Motivation -- The case for all solid state batteries

Adv. Energy Mater. 2015, 5, 1401408

www.MaterialsViews.com

DOI: 10.1002/aenm.201401408

www.advenergymat.de

Solid Electrolyte: the Key for High-Voltage Lithium Batteries

ORNL Juchuan Li,* Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney*

Advantages

- Compatible and stable with high voltage cathodes
- Compatible and stable with Li metal anodes
- Can be effective in thin formats

Disadvantages

- Relatively low ionic conductivity
- Lower total capacity compared with liquid electrolytes
- Possible physical and chemical interface issues

Demonstrated for LiNi_{0.5}Mn_{1.5}O₄/LiPON/Li

- $> 10^{-6}$ m LiPON electrolyte layer achieved adequate conductivity
- > 10,000 cycles* with 90% capacity retention
- *1 cycle per day for 27 years

- > Challenges for realistic (idealistic??) computer modeling
 - Technological challenges
 - > Improving the ionic conductivity
 - Stabilizing the electrolyte material in battery conditions
 - Stabilizing the cathode/electrolyte and anode/electrolyte interfaces
 - Checking accuracy of computational models in terms of physical and numerical approximations, comparing with real materials

Experimental story – Li₄P₂S₆ and Na₄P₂S₆ as examples of interesting electrolyte systems

$Li_4P_2S_6$ has been identified as a low conductivity decomposition product in the formation of lithium thiophosphate electrolytes.

Journal of the Ceramic Society of Japan 118 [4] 305-308 2010

Paper

Preparation and characterization of superionic conducting Li₇P₃S₁₁ crystal from glassy liquids

Keiichi MINAMI, Akitoshi HAYASHI and Masahiro TATSUMISAGO[†]

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599–8531

Fig. 2. Temperature dependence of conductivities for the crystallized samples prepared from the glass by heat treatment at various temperatures and holding periods of time.

Fig. 1. XRD patterns of the glass and crystallized samples prepared from the glass by heat treatment at various temperatures and holding periods of time.

Experimental story – Li₄P₂S₆ continued --

JOURNAL OF SOLID STATE CHEMISTRY 43, 151-162 (1982)

Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li₄P₂S₆

R. MERCIER, J. P. MALUGANI, B. FAHYS, J. DOUGLADE,* ET G. ROBERT

Laboratoire d'Electrochimie des Solides, ERA 810, et *Laboratoire de Chimie Physique, Université de Franche-Comté, 25030 Besancon Cedex, France

Structure analyzed as a disordered hexagonal structure with space group $P6_3/mcm$ (#193)

P₂S₆⁴⁻ building blocks:

hexathiohypodiphosphate

Mercier's disordered structure ascribed to placement of the building blocks and the corresponding arrangement of Li ions.

\succ Experimental story – Li₄P₂S₆ continued --

Dalton **Transactions**

Check for updates

Cite this: Dalton Trans., 2018, 47,

Refinement of the crystal structure of $Li_4P_2S_6$ using NMR crystallography*

Sven Neuberger, D^a Sean P. Culver, ^b Hellmut Eckert, ^{Dc,d} Wolfgang G. Zeier ^b and Jörn Schmedt auf der Günne 🕩 **

Prepared more highly crystalline samples; combined NMR and X-ray analysis to show that there are two inequivalent P sites 06/09/2021

PAPER

11691

View Article Online View Journal | View Issue

Experimental story – Li₄P₂S₆ continued --

Experimental story – Na₄P₂S₆ continued --

DOI: 10.1002/zaac.201300575

Z. Anorg. Allg. Chem. 2014, 640, (5), 689-692

Synthesis and Structural Characterization of the Alkali Thiophosphates Na₂P₂S₆, Na₄P₂S₆, K₄P₂S₆, and Rb₄P₂S₆

Alexander Kuhn,^[a] Roland Eger,^[a] Jürgen Nuss,^[a] and Bettina V. Lotsch^{*[a,b]}

 $Na_4P_2S_6$ found to crystallize in a base centered monoclinic structure with space group C2/m (#12); result verified by Zachary Hood and colleagues who also found the material to have appreciable Na ion conductivity.

Experimental story – Na₄P₂S₆ continued --

Primitive cell of the Kuhn structure

Space group C2/m

Ρ

Na

S

- Computational challenges
 - Can computer modeling explain the structural stability patterns found by experiment?
 - > What about possible new related materials?
 - What does computer modeling say about the mechanisms of ionic conductivity?

> Simulation of structural stability patterns

Computational details –

Formalism: Born-Oppenheimer approximation + Density functional theory (Hohenberg and Kohn, *Phys. Rev.* 136 B864 (1964); Kohn and Sham, *Phys. Rev.* 140 A1133 (1965))

Method: Projector Augmented Wave (P. Blöchl, *Phys. Rev. B* 50 17953 (1994)) Exchange correlation function: PBEsol (Perdew et al., *PRL* 100 136406 (2008))

Codes used for calculations

Function	Code	Website	
Generate atomic datasets	ATOMPAW	http://pwpaw.wfu.edu	
DFT; optimize structure; vibrational analysis	PWscf abinit	http://www.quantum-espresso.org http://www.abinit.org	
Structural visualization	XCrySDen VESTA	http://www.xcrysden.org http://jp-minerals.org/vesta/en/	

Simulation of structural stability patterns -- continued Wake Forest Stability approximated in terms of the Helmholtz free energy as a function of temperature T:

$$\begin{split} F(T) &= F_{SL}(T) + F_{vib}(T) \approx U_{SL} + F_{vib}(T) \\ \begin{array}{l} \text{Static} \\ \text{lattice} \\ \text{approx} \end{array} \begin{array}{l} \text{Harmonic} \\ \text{phonon} \\ \text{approx} \end{array} \begin{array}{l} \text{Internal} \\ \text{energy} \\ \text{from DFT} \end{array} \\ \\ F_{vib}(T) &= k_B T \int_{0}^{\infty} d\omega \ln \left(2 \sinh \left(\frac{\hbar \omega}{2k_B T} \right) \right) g(\omega) \\ \\ \text{phonon DOS} \end{split}$$

Simulation of structural stability patterns -- continued

¹Suggested path: Hinuma et al., Comp. Mat. Sci. **128**, 140-184 (2017) ²Li et al., J. Phys. Condens. Matter, **32**, 055402 (2020)

Discontinuous branches at Γ : coupling between photon and photon²

Simulation of structural stability patterns -- continued

Helmholtz free energy: $F = U_{SL} + F_{vib}$

¹Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014) ²Hood et al., *J. Solid State Ionics* **284**, 61 (2016) ³Neuberger et al., *Dalton Trans.* **47**, 11691-11695 (2018)

06/09/2021

Simulation of structural stability patterns -- continued

Summary of simulation energies

Na ₄ P ₂ S ₆	<i>∆U_{sL}</i> (eV)	<i>F_{vib}(300K)</i> (eV)	<i>F(300K)</i> (eV)
Neuberger structure (P3m1)	0.00	-0.04	-0.04
Kuhn structure (<i>C2/m</i>)	0.00	-0.08	-0.08
Simple hex structure (P31m)	0.09	-0.04	0.05
Li ₄ P ₂ S ₆	<i>∆U_{sL}</i> (eV)	<i>F_{vib}(300K)</i> (eV)	<i>F(300K)</i> (eV)
Neuberger structure (P3m1)	0.00	0.19	0.19
Kuhn structure (<i>C2/m</i>)	0.31	0.12	0.43
Simple hex structure (P31m)	0.04	0.20	0.24

Energies given in units of eV/formula unit with zero set at the static lattice energy for the Neuberger structure.

Vibrational Helmholtz free energy expression:

$$F_{vib}(T) = k_B T \int_0^\infty d\omega \ln\left(2\sinh\left(\frac{\hbar\omega}{2k_B T}\right)\right) g(\omega)$$

In practice, it is convenient to express frequencies in wavenumbers:

$$\tilde{\omega} = \frac{\omega}{2\pi c} (\text{cm}^{-1}) \text{ with } F_{vib}(T) = \int_{0}^{\infty} d\tilde{\omega} f_{vib}(\tilde{\omega}, T)$$

where the weighted phonon DOS factor is

$$f_{vib}(\tilde{\omega},T) \equiv k_B T \ln\left(2\sinh\left(\frac{hc\tilde{\omega}}{2k_B T}\right)\right)g(\tilde{\omega})$$

Na ion conductivity of Na₄P₂S₆ and Li₂Na₂P₂S₆ in the C2/m structure

Na ion conductivity of Na₄P₂S₆ and Li₂Na₂P₂S₆ in the C2/m structure

View of mobile Na ion plane (h plane)

- host Na site
- o interstitial Na site

> Computer modeling of mechanisms of ionic

University of Cambridge - Electronic Structure Discussions

Ionic conductivity

Some equations

Self ("tracer") diffusion as a function of temperature (T) of MD trajectories:

$$D_{tr}(T) = \frac{1}{2dN_{\text{Na}}} \lim_{t \to \infty} \left(\frac{1}{t} \left\langle \sum_{i=1}^{N_{\text{Na}}} \left| \mathbf{r}_{i}(t) - \mathbf{r}_{i}(0) \right|^{2} \right\rangle_{T} \right)$$
$$\sigma(T) = \frac{N_{\text{Na}}}{V} \frac{e^{2} D_{tr}(T)}{k_{B} T H_{r}}$$
$$N_{\text{Na}} = \text{ number of mobile Na ions}$$

$$V \equiv \text{volume}$$

$$H_r \equiv$$
 Haven ratio (estimated as 1)

Poor ionic conductor Structure stabilized by static lattice energy

Good ionic conductor within plane Structure stabilized by vibrational energy

06/09/2021

> More thoughts

- □ DFT with PBEsol+harmonic phonon simulations agree with the experimental structures of Na₄P₂S₆ (space group *C2/m* found by Kuhn and Hood) and Li₄P₂S₆ (space group P3m1, close to that found by Neuberger).
- □ For Na₄P₂S₆ find Na+ migration to take place in planes with the *h*-sites via a vacancy mechanism, involving interstitial *d*-sites. Both simulations and experiment suggest that Na₄P₂S₆ may be a viable solid electrolyte.
- Simulations predict Li₂Na₂P₂S₆ to crystallize with the C2/m structure and to be stable relative to Na₄P₂S₆+2Li-2Na. The mixed alkali electrolyte is predicted to substantially enhance Na ion conductivity.
- In addition to experimental verification (or otherwise) of the predictions for
 Li₂Na₂P₂S₆, further MD simulations for both Na₄P₂S₆ and Li₂Na₂P₂S₆ will help us
 better understand Na ion conductivity mechanisms.