Exact Ground State of the Hubbard Model in One Dimension and Arbitrary Filling at $u=\infty$

WAKE FOREST

U N I VERSITY

Introduction

Thirty years ago, an exact solution to the Hubbard mode in one dimension was found (the Bethe ansatz equations
leading to an exact expression for the energy of a half-filled band in the thermodynamic limit [1]. In this presentation, we return to these solutions, though make no assumption about the size of the lattice. We show that in the limit where the interaction parameter is infinitely large, straightforward solutions of the Bethe ansatz equations do not, in general
generate the exact ground state energy. We find a new gen generate the exact ground state energy. We find a new gen
eral expression for the ground state energy as a function of the number of particles and lattice sites. This result, which is consistent with numerical tests, requires a modification to the wavevectors obtained using the Bethe ansatz equations.

The Hubbard Hamiltonian

As the simplest model of electron-electron interactions in a lattice, the Hubbard model $[2,3]$ has elicited much at molecules and solids are represented by two competing term The first term is a kinetic energy term that arises from the tight-binding model and favors delocalized states; the sec
ond represents the electron-electron interactions and favor ond represents the electron-electron interactions and favors
localized states. Although the Hubbard model oversimplifies both terms by allowing only nearest-neighbor electro hopping and including only electron-electron interactions in the same non-degenerate orbital state, it has enjoyed som success in representing narrow band solids and Mott insula tors.
In second quantization, the Hamiltonian representing this model is

$$
\mathcal{H}(t, u)=-t \sum_{\langle i, j\rangle} c_{i \sigma}^{\dagger} c_{j \sigma}+u t \sum_{i} n_{i \uparrow} n_{i \downarrow},
$$

where $c_{i \sigma}^{\dagger}\left(c_{i \sigma}\right)$ creates (annihilates) an electron with spin σ in the Wannier state localized at site i, t is the electron hop energy. The sums are over the L lattice sites, with the sum in the one-particle term being restricted to nearest neighbors Assuming a one-dimensional chain with cyclic boundaries, each site has two nearest neighbors. This Hamiltonian also

$$
\left[\mathcal{H}, S^{ \pm}\right]=0 \text { and }\left[\mathcal{H}, \mathbf{S}^{2}\right]=0
$$

where $S^{+}\left(S^{-}\right)$is the spin raising (lowering) operator and using a particle-hole transformation we can assume, withou loss of generality, that the number of particles N is such that

From Eq. (1) we see that the number of particles of eac spin, N_{σ}, is conserved and

$$
N_{\uparrow}+N_{\downarrow}=N
$$

In order to obtain all possible energies of our system, we assume that

The Bethe Ansatz Equations Bethe's ansatz [4], which was originally applied to the one dimensional Heisenberg model, has seen use in a variety delta function interaction $[5,6]$, where general solutions were obtained. In 1968, Lieb and Wu derived a similar set of solutions for the Hubbard model in one dimension [1]. We use their results to obtain the ground state energy in the strongly coupled limit $(u=\infty)$ for arbitrary filling. We be lieve the exact meth
ions to be novel. Aplying the Bel
Applying the Bethe ansatz to the one-dimensional Hubbard form reminiscent of that for independent electrons [1]

$$
E\left(N_{\downarrow}, N_{\uparrow} ; u\right)=-2 t \sum_{j=1}^{N} \cos k_{j} .
$$

To find the wavevectors, k, requires solving the set of coupled nonlinear equations (the Bethe ansatz equations)

$$
L k_{j}=2 \pi I_{j}+\sum_{\beta=1}^{N_{\downarrow}} \theta\left(2 \sin k_{j}-2 \lambda_{\beta}\right),
$$

and
$\sum_{j=1}^{N} \theta\left(2 \sin k_{j}-2 \lambda_{\alpha}\right)=2 \pi J_{\alpha}-\sum_{\beta=1}^{N_{\perp}} \theta\left(\lambda_{\alpha}-\lambda_{\beta}\right), \quad(8$ where
$\theta(x) \equiv-2 \tan ^{-1}(2 x / u)$,
(9)
and I_{j} is an integer (half-odd integer) if N_{\downarrow} is even (odd) and J_{α} is an integer (half-odd integer) if $N_{\uparrow}=N-N_{\downarrow}$ is odd $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}$ and the index j in Eq. (7) runs from

$$
\text { The } u=\infty \text { Limit }
$$

By assuming that the wavevectors corresponding to the groun state are real and taking the $u=\infty$ limit, we can ignore all
terms of the form sin k / u in Eqs. (7) and (8) (this assumpion would not be valid if $N>L$ since the ground state energy would be linear in u and the k_{j} 's necessarily complex. As a result, Eqs. (7) and (8) become

$$
L k_{j}=2 \pi I_{j}-\sum_{\beta=1}^{N_{\perp}} \theta\left(2 \lambda_{\beta}\right)
$$

and

```
    \(-N \theta\left(2 \lambda_{\alpha}\right)=2 \pi J_{\alpha}-\sum_{\beta=1}^{N_{1}} \theta\left(\lambda_{\alpha}-\lambda_{\beta}\right), \quad(11)\)
```

ad we obtain a simple

$$
\begin{equation*}
k_{j}=\frac{2 \pi}{L}\left[I_{j}+\frac{1}{N} \sum_{\beta=1}^{N_{b}} J_{\beta}\right] \tag{12}
\end{equation*}
$$

There appear to be four cases that must be examined. The first two occur if N is even; then N_{\downarrow} and $N-N_{\downarrow}$ are either both even or both odd. In either case,

$$
\begin{equation*}
\sum_{\beta=1}^{N_{\perp}} J_{\beta}= \tag{13}
\end{equation*}
$$

since the $J_{\alpha} s$ are consecutive integers (or half-odd integers) centered around the origin. The remaining two cases occur if N is odd in which case the sum in Eq. (12) is dependent
upon N.

$$
\begin{equation*}
\sum_{\beta=1}^{N_{\mathrm{L}}} J_{\beta}=\frac{N_{\downarrow}}{2} . \tag{14}
\end{equation*}
$$

Using these results, Eq. (12) becomes

$$
k_{j}\left(N_{\downarrow}, N_{\uparrow}, L\right)= \begin{cases}\frac{2 \pi I_{j}}{L}, & N \text { even } \tag{15}\\ \frac{2 \pi}{L}\left(I_{j}+\frac{N_{\downarrow}}{2 N}\right), & N \text { odd }\end{cases}
$$

$$
\text { where } 1_{j}=j\left(I_{j}=j+\frac{1}{j}\right) \text { when } N_{1} \text { Is even (odd) }
$$

where $I_{j}=j\left(I_{j}=j+\frac{1}{2}\right)$ when N_{\downarrow} is even (odd).
We expect the ground state of a system to be described by the set of k_{j} 's defined in Eq. (15), consistent with the system's parameters, that minimizes Eq. (6). As an example, let us examine the case of one hole ($(N=L-1$), which has a well known solution, namely that the ground state energy Let us assume that $N=L-1=4 n+1$ and $N_{\mathrm{\perp}}=2 n$, where n is an integer. Then Eq. (15) becomes
$k_{j}(2 n, 2 n+1,4 n+2)=\frac{2 \pi}{4 n+2}\left[j+\frac{n}{4 n+1}\right], \quad$ (16)
where j is an integer and lies in the interval $[-2 n, 2 n+1]$. Energies are found using the energy formula given in Eq,
(6): the ground state corresponds to the lowest set of k, and is shown in Figure 1. This plot shows that our solution to the Bethe ansatz equation does not obtain the predicted exact ground state energy, except in the one-electron case $(n=0)$ and the thermodynamic limit $(n=\infty)$. In response ot this dilemma, we offer the following
Theorem. All possible $k_{j}\left(M, M^{\prime}, L\right)$ defined in Eq. (15),
where $0<M<N, N+M^{\prime}<N$, and $M+M^{\prime}=N$ a are valid wavevectors for a system described by N_{H}, N_{\downarrow}, and L This theorem is a direct result of Eq. (2). To prove it, we assume that all of the wavefunctions $\psi\left(N_{\downarrow}, N_{\uparrow}, L\right)$, where N_{σ} satisfies Eq. (5), are known

$$
\mathcal{H} \psi\left(N_{\downarrow}, N_{\uparrow}, L\right)=E \psi\left(N_{\downarrow}, N_{\uparrow}, L\right) .
$$

(17)

Applying the spin-raising operator S to Eq. (17) and using the commutation relation given in Eq. (2) results in either the wavefunction being annihilated or the eigenvalue equa-
tion
$\mathcal{H} \psi\left(N_{\downarrow}-1, N_{\uparrow}+1, L\right)=E \psi\left(N_{\downarrow}-1, N_{\uparrow}+1, L\right) . \quad$ (18) Therefore, the set of energies defined in Eq. (18) is a subset of the set of energies defined in Eq. (17)
 Figure 1: Plots of the exact yround state energy (doted line) and energy
obtained using the Bethe ansatz solution in Eqs. (f) and (1) (solid line)
at $u=\infty$ for $N=L-1=4 n+1$, as a function of n. The discrete points at $u=\infty$ for $N=L-1=4 n+1$, as a tunction of n. The discrete poin
at which symbols are placed correspond to integer paticle numbers.

Question. Using the Bethe ansatz solutions, is the set of energies defined in Lq. (18) a subset of the set of energies de fined in Eq. (17)
It can be shown that the answer to this question is, no. By using our theorem, we concluce the wavevectors corre sponding to the ground state are

$$
k_{j}\left(N_{\downarrow}, N_{\uparrow}\right)= \begin{cases}\frac{2 \pi}{L}\left(j+\frac{1}{2}\right), & N \text { even } \tag{}\\ \frac{2 \pi j}{L}, & N \text { odd }\end{cases}
$$

Using this result, we calculate the ground state energy of
system with arbitrary filling at $u=\infty$ to be

$$
\begin{equation*}
E(N, L)=-2 t \frac{\sin \left(\frac{\pi N}{L}\right)}{\sin \left(\frac{\pi}{L}\right)}, \tag{20}
\end{equation*}
$$

In the thermodynamic limit, $\sin (\pi / L) \rightarrow \pi / L$ and Eq. (20 is consistent with the ground state energy found previously
in this limit 88$]$. Furthermore, it is easy to show that Eq. (20) is consistent with the lower bound calculation to the ground state energy for all L [9].
Aside from the energy, the wavevectors defined in Eq. (19) tell us something about the properties of the ground state When N is odd, the corresponding wavevectors are the sam as those for independent electrons. Due to the short-rang nature of the interaction term in Eq. (1), the easiest way to (which $u=\infty$ certainly satisfies), is by forcing all of the to have aligned spins. Then the Pauli principle disallow any two electrons from occupying the same lattice site and the electron-electron interaction term vanishes. The abov argument is valid for any system with N odd and N and, since states with all electron spins aligned must hav
maximal total spin, we conclude with a few observation about the ground state.

Abstract

Figure 2: Plots of the exact ground state energy (doted line) using Eq (20) and energy obtained using the unmodified Bethe ansatz solutions (20) and energy obtained using the unmodified Bethe ansatz solutions Eqs. (() and (15) (Squares) at $u=\infty$ for $L=10$ as a function of the correspond to integer particle numbers.

Observation 1. For an odd number of electrons, there exist. exactly one state with maximal total spin that is a ground tate at $u=\infty$ obstion wimal total spin that is a ground sta t $u=\infty$.

Conclusions

, ound that the wavevectors obtained by solving the Bethe ansatz equations in the limit when $u=\infty$ did not agree we argued that the number of particles of toach spinlem, he varied in order to obtain the desired ground state. Us ing this method, we have obtained an expression for the exact ground state energy of a system with arbitrary filling a $u=\infty$. In the thermodynamic limit, our result is in agree

References

(1] E. H. Lieb and F. Y. Wu. Absence of Mott Transition in an Exac Solution of the Shor-Range, One-Band Model in One Dimension.
Physc Rev Lett 20.144, 1968 . Phys. Rev. Lett, 20:1445, 196
[2] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc 33] J. Hubbard. Electron Correlations in Narrow Energy Bands. II. The ${ }^{44]}$ H. A. Bethe. On the Theory of Meals, I. Eigenvalues and Eige of a Linear Chain of Atoms. Z. Phys. 71:205, 1931. ${ }^{[5]}$ M Gaudin Un système ̀̀ure dimen sf for the Many-Body Problem in One Dimension with Repulsive Detta-Function Interaction. Phy Rev. Lett., 19:1312, 1967.
[7] Y. Nagaoka. Ferromagnetism in
Band. Phys. Rev, $147: 392,1966$.
${ }^{[8]}$ H. Shiba. Magnetic Susceptibility a
Dimensional Hubbard Modede. Physs. Rev. B, 6:930, 1972 .
19] S. A. Trumman. Exact results for the $U=\infty$ Hubbard model. Phys.
Rev. $B, 42: 6012$. 1990 .

