Computational and experimental investigation of Na₄P₂S₆ as a promising solid electrolyte material for sodium metal batteries

Yan Li¹, Zachary D. Hood² and Natalie A. W. Holzwarth¹

¹Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA ²Electrochemical Materials Laboratory, MIT, Cambridge, MA 02139, USA

Motivation

3/5/2019

- Kuhn et al.¹ observed that Na₄P₂S₆ crystallizes to form monoclinic space group C2/m (#12)
- Computational results of Rush et al.²: Kuhn structure is meta-stable
- Recent experimental results of Hood et al.³ also find the C2/m structure
- Theoretically, Na₄P₂S₆ and Li₄P₂S₆ are chemically and structurally related
- Using combined approach of NMR and X-ray, the new experimental analysis⁴ on Li₄P₂S₆ concludes the structure to be ordered with space group P321 (#150)
- Compared to Li₄P₂S₆, Na₄P₂S₆ is a competitive electrolyte candidate³

¹Kuhn et al., *Z. Anorg. Allg. Chem.* 640, 689-692 (2014).
²Rush et al., *Solid State Phys.* 286, 45-50 (2016).
³Hood et al., Manuscript in preparation.
⁴Neuberger et al., *Dalton Trans.* 47, 11691-11695 (2018).

Reexamine previous calculations to understand the stability of the Kuhn structure

Property similarities
 (discrepancies) between
 Na₄P₂S₆ and Li₄P₂S₆

Conductivity mechanism

(P₂S₆)⁴⁻ with D_{3d} symmetry

Computational Methods

- Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) with the modified Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol GGA) PRB 79 1551107 (2019)
- The projector augmented wave (PAW) formalism using ABINIT (<u>https://www.abinit.org</u>)
 & Quantum ESPRESSO (<u>http://www.quantum-espresso.org</u>)
- Datasets generated by ATOMPAW code available at http://pwpaw.wfu.edu
- □ Visualization software: XCrySDen, VESTA
- □ Space-group analysis: FINDSYM
- □ X-ray powder diffraction: Mercury

obtained using (Local-density approximation) LDA

reported results¹

Previously

¹Rush et al., Solid State Phys. 286, 45-50 (2016).

P S

Projection of the basic structure

$$\mathbf{P}_{\uparrow} = \pm z_P \vec{c}$$

$$\mathbf{P}_{\downarrow} = \pm \left(\frac{1}{2} - Z_P \right) \vec{C}$$

Hood et al., J. Solid State Ionics 284, 61 (2016).

Model Structures Considered

💿 💿 Inequiv. Na(Li) 🌘 P 🜔 S

Hexagonal **P321** (#150)¹ 3 formula units / unit cell Hexagonal **P31m** (#162)³ 1 formula unit / primitive unit cell

Monoclinic **C2/m** (#12)⁴ 1 formula unit / primitive unit cell

 $\frac{1}{3} \mathbf{P}_{\uparrow} \quad \frac{2}{3} \mathbf{P}_{\downarrow}$

100% P_↑

100% P↑

¹Neuberger et al., *Dalton Trans*. 47, 11691-11695 (2018).
²Mercier et al., J. *Solid State Chem*. 43, 151–162 (1982).
³Hood et al., *J. Solid State Ionics*, 284, 61 (2016).
⁴Kuhn et al., *Z. Anorg. Allg. Chem*. 640, 689-692 (2014).

Comparison of the fractional coordinates of $Li_4P_2S_6$ and $Na_4P_2S_6$ based on the Neuberger structure¹.

$\rm Li_4P_2S_6$		Ca	lculat	ed	Experiment				
Atom	Wyck	x	y	z	Wyck	x	y	z	
Li	6 g	0.666	0.000	0.000	3 e	0.625/0.683	0.000	0.0000	
Li	6 h	0.667	0.000	$\frac{1}{2}$	3 <i>f</i>	0.631/0.671	0.000	$\frac{1}{2}$	
Р	2 c	0.000	0.000	$0.\bar{1}71$	2 c	0.000	0.000	0.170	
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.663	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.668	
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.324	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.335	
\mathbf{S}	6 i	0.110	0.220	0.242	6 g	0.108	0.217	0.241	
\mathbf{S}	6 i	0.114	0.557	0.254	6 g	0.122	0.561	0.250	
\mathbf{S}	6 i	0.447	0.224	0.259	6 g	0.452	0.226	0.255	
$Na_4P_2S_6$		Calculated							
Atom	Wyck	x	y	z					
Na	6 g	0.659	0.000	0.000					
Na	6 h	0.676	0.000	$\frac{1}{2}$					
Р	2 c	0.000	0.000	$0.\bar{1}57$					
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.660					
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.342					
\mathbf{S}	6 i	0.102	0.205	0.229					
\mathbf{S}	6 i	0.129	0.564	0.271					
\mathbf{S}	6 i	0.463	0.231	0.264					

¹Neuberger et al. *Dalton Trans.* 47, 11691-11695 (2018).

Static Lattice Results

Summary of static lattice results calculated with PBEsol GGA formalism. Lattice constants for the primitive unit cells are listed in units of Å and angles in degrees. The energies ΔE are listed as eV/(formula unit) referenced to the energy of the P $\overline{3}$ m1 structure.

Li ₄ P ₂ S ₆	а	b	С	α	β	Y	ΔE	
P31m (#162)	6.03	6.03	6.48	90.0	90.0	120.0	0.04	
C2/m (#12)	6.08	6.08	6.89	97.9	97.9	119.1	0.31	
P3m1 (#164) ^a	10.42	10.42	6.54	90.0	90.0	120.0	0.00	
Na ₄ P ₂ S ₆	а	b	С	α	β	Y	ΔE	
P31m (#162)	6.45	6.45	7.13	90.0	90.0	120.0	0.09	LDA results
C2/m (#12) ^b	6.51	6.51	7.52	98.5	98.5	117.6	0.00	suggest that C2/m structure
P3m1 (#164)	11.10	11.10	7.25	90.0	90.0	120.0	0.00	is meta-stable
							static	and vibrationa

^a Corresponding experimental values quoted from Neuberger et al., *Dalton Trans.* 47, 11691-11695 (2018) are a = b = 10.51 Å, c = 6.59 Å ^b Corresponding experimental values deduced from Kuhn et al., *Z. Anorg. Allg. Chem.* 640, 689-692 (2014) are a = b = 6.54 Å, c = 7.54 Å, $\alpha = \beta = 98.7$ deg, $\gamma = 118.1$ deg.

Density Functional Perturbation Theory (DFPT)¹: $(H_{SCF} - \varepsilon_n) |\Delta \psi_n\rangle = -(\Delta V_{SCF} - \Delta \varepsilon_n) |\psi_n\rangle$

 $\sum_{t,\beta} \left(\tilde{D}_{st}^{\alpha\beta} \left(\vec{q} \right) - \omega^2 \left(\vec{q} \right) \delta_{st} \delta_{\alpha\beta} \right) u_t^{\beta} \left(\vec{q} \right) = 0 \quad \Longrightarrow \quad \text{Eigenvalues and Eigenvectors (} \omega(q), \{u_i\})$

Comparisons of main Raman active modes (cm⁻¹) 600

Cal.	Exp. ²
149	152
196	203
261	273
366	383
537	560
565	577

¹Baroni et al., *Rev. Mod. Phys.* 73, 515-562 (2001). ²Hood et al., Manuscript in preparation. ³Hinuma et al., *Comp. Mat. Sci.* 128, 140-184 (2017). 💿 💿 Inequiv. Na 🛛 🜑 P 🜔 S

Stability Analysis

Helmholtz free energy: $\mathbf{F} = \mathbf{U}_{SL} + \mathbf{F}_{vib}$

Where U_{sL} is the static lattice internal energy and F_{vib} is the phonon free energy in harmonic approximation

Ion Migration of Na₄P₂S₆ in the C2/m Structure

$$E_A^{NEB} = E_m + \frac{1}{2}E_f$$
, $\sigma(T) = \frac{K}{T}e^{-E_A/k_BT}$

Comparing activation energies E_A (eV) for Na ion conductivity

¹Henkleman et al., *J. Chem. Phys.* 113, 9901-9904 (2000). ²Rush et al., *Solid State Phys.* 286, 45-50 (2016). ³Hood et al., Manuscript in preparation.

March 2019 APS

- □ According to PBEsol GGA results, $Na_4P_2S_6$ is to be stabilized in the C2/m structure and $Li_4P_2S_6$ is to be stabilized in the P $\overline{3}$ m1 structure
- PBEsol GGA and LDA results of activation energy for Na ion migration reasonably agree with the experimental measurements which suggest a viable solid electrolyte
- MD simulations are expected to provide more information on understanding the conductivity mechanisms
- \Box Calculations will be performed to investigate the stability of Na₄P₂S₆/Na interface

□ This work was supported by NSF grant DMR-1507942

- □ Computations were performed on the Wake Forest University DEAC cluster, a centrally managed resource with support provided in part by the University
- Thank my advisor Prof. Natalie A. W. Holzwarth and our experimental collaborator Dr. Zachary D. Hood