Li ion diffusion mechanism in the crystalline electrolyte γ-Li₃PO₄

Yaojun Du and N. A. W. Holzwarth

The structure of thin film battery³

Solid state electrolyte could be made very thin to overcome to the low ion-conductivity. Such as LiPON (Li_3PO_4)

LiPON electrolyte based on Li_3PO_4 , that is chemically and physically stable. is developed by ORNL¹.

Conductivities of various Li₃PO₄-based materials are measured²

$$\sigma(T) = \frac{K}{T} e^{-E_A/kT}$$

material	E _A (eV)	σ (S cm ⁻¹) ^a
γ-Li ₃ PO ₄	1.24	4.2 10 ⁻¹⁸
Li _{2.88} PO _{3.73} N _{0.14}	0.97	1.4 10 ⁻¹³
Li _{2.7} PO _{3.9}	0.68	6.6 10 ⁻⁸
Li _{3.3} PO _{3.9} N	0.56	2.4 10 ⁻⁶

1. B. Wang et al., J. of Solid State Chemistry **115**, 313 (1995).

a. Measured at 25 °C

- 2. J. B. Bates et al., Solid State Ionics **53-56**, 647 (1992).
- 3. http://www.ms.ornl.gov/researchgroups/Functional/BatteryWeb/CrossSection.html

Goal and Outline

For single crystal. Intrinsic carriers are created as Li vacancy-interstitial pair (Frenkel pair), which yields¹

$$\boldsymbol{\sigma} \cdot \boldsymbol{T} \sim n e^{-E_m/kT} = e^{-(E_m + E_f/2)/kT}$$

•Method.

- •Vacancy mechanism of Li ion.
- •Interstitial mechanism of Li ion.
- •Formation of vacancy-interstitial pair.
- •Conclusion.

1. A. R. West, *Basic Solid state Chemistry*, 2nd ed; John Wiley & Sons: Chichester, U.K., 1999, p.217-218.

For doped crystal. extrinsic carriers are created as doped, which yields

$$\sigma \cdot T \sim e^{-E_m/kT}$$

 $Li_{2.88}PO_{3.73}N_{0.14}$ with 12%vacancy as doped.

Methods

Nudged elastic band¹ method determines the minimal energy path connecting two adjacent local minima

1. www.pwscf.org

2. H. Jónsson *et al.*, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), P. 385. G. Henkelman *et al*, J. Chem. Phys. **113**, 9901 (2000).

Vacancy diffusion mechanism

γ-Li₃PO₄

Volume optimized by Parrinello-Rahman scheme

	Experiment ¹	GGA	LDA
a (Å)	10.490	10.58	10.32
b (Å)	6.120	6.17	6.01
c (Å)	4.9266	4.99	4.84

Two types of Li (*d* and *c*) result in two types of Li ion vacancy:

$$E(\text{Li}_{v(d)}) - E(\text{Li}_{v(c)}) = 0.22 (0.20) \text{ eV}$$

X coordinate is defined as

$$x_{iI} = \Delta X_{if} \frac{u_{iI}}{u_{if}}$$
 where
 $u_{iI} \equiv \sum_{J=i+1}^{I} d_{J,J-1}$ and $d_{J,J-1} \equiv \left| \sum_{a} (\mathbf{R}_{J}^{a} - \mathbf{R}_{J-1}^{a}) \right|$

1. O. V. Yakubovich and V. S. Urusov, Cyrstallography Reports **42**, 261 (1997).

Vacancy diffusion mechanism

γ-Li₃PO₄

The configuration of Li ion interstitial

The crystal can be divided into two distinct voids channel along the caxis, which, in turn, provides a general scan of possible interstitial sites.

	Energy	Х	у	Z
I ₀	0.00	0.30	0.25	0.00
I ₁	0.78	0.28	0.25	0.59
II ₀	0.18	0.52	0.07	0.57
<i>II</i> *	0.35	0.50	0.00	0.50

Results are computed in GGA

The II_0 interstitial induces biggest distortion of a neighboring c-type Li ion

Interstitial diffusion mechanism along the b-c axis

The II_0 kicks and replace a neighboring d-type Li-ion. The "kicked-out" d-type Li-ion becomes an II_0 . The whole process takes place between two adjacent I channel.

$$I_0(-0.30, 0.75, 1.00)$$

 $I_0(-0.20, 0.25, 0.50)$

Interstitial diffusion mechanism along a-axis

Diffusion occurs between two different void channels: *I* and *II*.

$$I_{0}(0.30, 0.25, 1.00)$$

$$I_{0}(0.52, 0.07, 0.57)$$

$$II^{*}(0.50, 0.00, 0.50)$$

$$I_{0}(0.48, -0.07, 0.43)$$

$$I_{0}(0.70, -0.25, 0.00)$$

The whole process has an inversion symmetry centered at the saddle point configuration II* at the site (0.5, 0.0, 0.5)

Formation of interstitial-vacancy pair

The interstitial-vacancy pair is constructed as I_0 interstitial and its next-neighbor c-type vacancy.

Formation energy: $E_f = 1.6 (1.7) \text{ eV}$

Conductivity of γ -Li₃PO₄ $\sigma \cdot T \sim e^{-(E_m + E_f/2)/kT}$

		Experiment ¹ (ev)	GGA(eV)	LDA (eV)
	а	1.23	1.0	1.1
	b	1.14	1.0	1.1
V	С	1.14	1.0	1.1

Interstitial diffusion of barrier of 0.2 eV dominates vacancy diffusion of 0.6-0.7 eV

1. A. K. Ivanov-Shitz, et al., Crystallography Report 46, 864 (2001)

Future work

•The doped $Li_{2.88}PO_{3.73}N_{0.14}$ has a measured diffusion barrier of 0.97 compared to our computed 0.6 – 0.7 eV in GGA and 0.7 eV in LDA.

•The oxygen vacancy might provide traps for migrating Li ion.

•Interface between anode and electrolyte may also have a significant effect on the diffusion.

•The role of N dopants has yet to be investigated.

•The diffusion within β -Li₃PO₄ is currently under study. Preliminary results shows it has comparable barriers as γ -Li₃PO₄.

Conclusion

•Li ion can migrate in Li_3PO_4 via both vacancy and interstitial mechanisms.

•For the vacancy mechanism, Li ion diffuses along three crystallographic directions with a slight anisotropy of 0.6 - 0.7 eV.

•The interstitial mechanism involves a "kick-out" process, and provides the lowest migration barrier of 0.21 (0.29) eV along the b and c axes and 0.23 (0.30) eV along the a axis.

•The formation energy of interstitial-vacancy pair is 1.6 (1.7) eV. Hence the intrinsic defects can diffuse along three crystallographic directions with a slight anisotropy of 1.0 - 1.1 eV consistent with experimental results.