
Li ion diffusion mechanism in the crystalline 
electrolyte  γ-Li3PO4

The structure of thin film battery3

Solid state electrolyte could be made 
very thin to overcome to the low ion-
conductivity. Such as LiPON (Li3PO4 )

LiPON electrolyte based on Li3PO4, 
that is chemically and physically 
stable. is developed by ORNL1.
Conductivities  of various Li3PO4-
based materials  are measured2
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4.2  10-181.24γ-Li3PO4
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2. J. B. Bates et al., Solid State Ionics 53-56, 647 (1992).

3. http://www.ms.ornl.gov/researchgroups/Functional/BatteryWeb/CrossSection.html
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a. Measured at 25 oC



Goal and Outline

For single crystal. Intrinsic carriers 
are created as Li vacancy-interstitial 
pair (Frenkel pair), which yields1
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For doped crystal. extrinsic carriers 
are created as doped, which yields
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•Method.

•Vacancy mechanism of Li ion.

•Interstitial mechanism of Li ion.

•Formation of vacancy-interstitial pair.

•Conclusion.  

γ-Li3PO4 (Pnma)

Li2.88PO3.73N0.14 with 12%vacancy 
as doped.

1. A. R. West, Basic Solid state Chemistry, 2nd ed; John 
Wiley & Sons: Chichester, U.K., 1999, p.217-218.



Methods

Nudged elastic band1 method determines the minimal 
energy path connecting two adjacent local minima

Quantum ESPRESSO (PWscf )1 package and ultra-soft pseudopotential
formalism of Vanderbilt using GGA and LDA.

1. www.pwscf.org

2. H. Jónsson et al.,  in Classical and Quantum Dynamics in Condensed Phase 
Simulations, edited by B. J. Berne, G. Ciccotti, and  D. F. Coker  (World Scientific, 
Singapore, 1998), P. 385. G. Henkelman et al, J.  Chem. Phys. 113, 9901 (2000).

Single L-point k-mesh sampling, cutoff of planewave is 30 Ry. 
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Vacancy diffusion mechanism

Two types of Li (d and c) result in two 
types of Li ion vacancy:
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1. O. V. Yakubovich and V. S. Urusov, Cyrstallography Reports 
42, 261 (1997).
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γ-Li3PO4
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Vacancy diffusion mechanism
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The configuration of Li ion interstitial  

The crystal can be divided into two 
distinct voids channel along the c-
axis, which, in turn, provides a 
general scan of possible interstitial 
sites.
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The II0  interstitial induces biggest 
distortion of  a neighboring c-type Li ion

Results are computed in GGA



Interstitial diffusion mechanism along the b-c axis 

The II0 kicks and replace a neighboring d-type 
Li-ion. The “kicked-out” d-type Li-ion becomes 
an II0 .   The whole process takes place between 
two adjacent I channel.
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Interstitial diffusion mechanism along a-axis

Diffusion occurs between two 
different void channels: I and II.

The whole process has an 
inversion symmetry 
centered at the saddle point 
configuration II* at the site 
(0.5, 0.0, 0.5)
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Formation of interstitial-vacancy pair

The interstitial-vacancy pair is 
constructed as I0 interstitial and its 
next-neighbor c-type vacancy.
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Formation energy: eV (1.7)  6.1=fE
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1. A. K. Ivanov-Shitz, et al., Crystallography Report 46, 864 (2001)



Future work

•The doped Li2.88PO3.73N0.14 has a measured diffusion barrier of 0.97 
compared to our computed 0.6 – 0.7 eV in GGA and 0.7 eV in LDA. 

•The oxygen vacancy might provide traps for migrating Li ion.

•Interface between anode and electrolyte may also have a 
significant effect on the diffusion.

•The role of N dopants has yet to be investigated.

•The diffusion within β-Li3PO4 is currently under study. Preliminary 
results shows it has comparable barriers as γ-Li3PO4.



Conclusion

•Li ion can migrate in Li3PO4 via both vacancy and interstitial mechanisms.

•For the vacancy mechanism, Li ion diffuses along three crystallographic 
directions with a slight anisotropy of  0.6 – 0.7 eV.

•The interstitial mechanism involves a “kick-out” process, and provides the 
lowest migration barrier of  0.21 (0.29) eV along the b and c axes and 0.23
(0.30) eV along the a axis.

•The formation energy of interstitial-vacancy pair is 1.6 (1.7) eV. Hence the 
intrinsic defects can diffuse along three crystallographic directions with a 
slight anisotropy of  1.0 – 1.1 eV consistent with experimental results.


