First principles simulations of Li ion migration in materials related to LiPON electrolytes ^a

Yaojun A. Du^b and <u>N. A. W. Holzwarth</u>

Department of Physics, Wake Forest University, Winston-Salem, NC, USA

- Comments on solid electrolytes
- Overview of LiPON family
- Computational methods

- Simulations of LiPO₃
- Simulations of *predicted* Li₂PO₂N
- Summary and conclusions

^aSupported by NSF grants DMR-0427055 and 0705239; Wake Forest University DEAC computer cluster. ^bCurrent address: ICAMS, Ruhr-Universität Bochum, Germany

Solid vs liquid electrolytes in Li ion batteries

Solid electrolytes

Advantages

- 1. Excellent chemical and physical stability.
- 2. Performs well as thin film ($\approx 1\mu$).
- 3. Li^+ conduction only (excludes electrons).

Disadvantages

- 1. Thin film geometry provides poor contact area for high capacity electrodes.
- 2. Subject to interface stress if electrodes change size during charge and discharge cycles.
- 3. Relatively low conductivity per unit area.

Liquid electrolytes

Advantages

- 1. Excellent contact area with high capacity electrodes.
- 2. Can accomodate size changes of electrodes during charge and discharge cycles.
- 3. Relatively high conductivity per unit area.

Disadvantages

- 1. Relatively poor physical and chemical stability.
- 2. Relies on the formation of "solid electrolyte interface" (SEI) layer.
- 3. May have both Li^+ and electron conduction.

Overview of LiPON family of electrolytes

The thin film solid electrolyte LiPON developed at Oak Ridge National Laboratory^{*a*} is the most widely used solid electrolyte for thin film batteries and a number of other related technologies. While commercial LiPON electrolytes are disordered, much can be learned from related crystalline materials in the $\text{Li}_x \text{PO}_y \text{N}_z$ family (x = 2y + 3z - 5). In order to systematize the current state of undertanding of the crystalline members of the family, it is helpful to visualize a quaternary phase diagram of known materials reported in the literature together with new stable and meta-stable predicted by computer simulation. The corners of the composition tetrahedron indicate the starting materials of $LiO_{1/2}$, $LiN_{1/3}$, PO_{5/2}, and PN_{5/3}.

Natural and synthetic crystalline materials (•), LiPON thin film materials (•), and computer simulated idealized phosphate chain structure materials (•).

^{*a*}Bates, Dudney, *et al Solid State Ionics* **53-54**, 647 (1992); Dudney *Interface* **17**, 44 (2008)

Measured conductivity in $Li_x PO_y N_z$ materials

Measured activation energies E_A in some $\operatorname{Li}_x \operatorname{PO}_y \operatorname{N}_z$ materials

Material	Form	E_A (eV)	
γ -Li ₃ PO ₄	single crystal ^a	1.23, 1.14	
Li _{2.88} PO _{3.73} N _{0.14}	poly cryst. ^b	0.97	
Li _{3.3} PO _{3.9} N _{0.17}	amorphous ^b	0.56	
Li _{1.35} PO _{2.99} N _{0.13}	amorphous ^c	0.60	
LiPO ₃	poly cryst. ^d	1.4	
LiPO ₃	amorphous ^d	0.76-1.2	
LiPN ₂	poly cryst. ^e	0.6	
Li ₇ PN ₄	poly cryst. ^e	0.5	

^aIvanov-Shitz et al, Cryst. Rep. 46 864 (2001)

- ^bWang et al, J. Solid State Chem. **115** 313 (1995)
- ^cMũnoz et al, Solid State Ionics **179** 574 (2008)

^eSchnick et al, Solid State Ionics **38** 271 (1990)

Arrhenius equation for ionic conduction

 (σ) as a function of temperature (T):

 $\sigma \cdot T = \underbrace{K}_{e^{-E_A/kT}}.$

Constant

For crystalline materials:

 $E_A = \underbrace{E_m}_{+\frac{1}{2}} \underbrace{E_f}_{+\frac{1}{2}} \cdot \underbrace{E_f}_{+\frac{1}{2}} \cdot$

For disordered materials:

 $E_A = \underbrace{E_m}$

Migration

Formation

Migration

^dMoney et al, Appl. Phys. A **88** 647 (2007)

Open questions on LiPON materials

- What are the Li ion migration mechanisms?
- Which phosphonitride structures and stoichiometries are the most stable and which optimize Li ion conductivity?
- What is the relationship between the ordered and disordered structures?

Computational methods

- "First principles" simulations using density functional theory^a to treat the electrons and the Born-Oppenheimer approximation to treat the nuclear positions $\{\mathbf{R}^a\}$, to determine the "total energy" $E(\{\mathbf{R}^a\})$ of the system.
- Variety of computer codes PWscf^b, pwpaw^c, abinit^d

^aHohenberg and Kohn, *Phys. Rev.*, **136** B864 (1964); Kohn and Sham, *Phys. Rev.*, **140** A1133 (1965). ^bGiannozzi *et al*, *J. Phys.: Condens. Matter* **21** 394402 (2009) www.quantum-espresso.org ^cTackett *et al*, *Comp. Phys. Comm.* **135** 348 (2001) pwpaw.wfu.edu ^dGonze *et al*, *Zeit. Kristallogr.* **220** 550 (2005) www.abinit.org.

Computational methods – more details

Quantities derived from $\min_{\{\mathbf{R}^a\}} E(\{\mathbf{R}^a\})$:

- Stable and meta-stable structures
- Lattice lattice vibration modes and frequencies (ν)
- Heats of formation (ΔH)
- Migration energies (E_m)
- Energies for interstitial-vacancy pair formation (E_f)

 E_m from "Nudged elastic band"^a estimate of minimal energy path:

^aJónsson *et al* in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne et al (World Scientific, 1998), p. 385; Henkelman *et al*, *J. Chem. Phys.* 113 9901, 9978 (2000).

Computational methods – validation

Calculated Raman spectra (red) compared with Exp. A - (RT) - Mavrin & co-workers, JETP 96, 53 (2003);Exp. B - (RT) - Harbach & co-workers, Phys. Stat.Sol. B 66, 237 (1974); Exp. C - (LNT) - Harbach;Exp. D - (LNT) Popović & co-workers, J. Raman Spec. 34 77, (2003)

Calculated infrared spectra (red) compared with experiment of Kroll and Schnick, *Chem. Eur. J* **8** 3530 (2002).

Phosphate chain material: LiPO₃

LiPO₃ in P2/c structure; 100 atom unit cell

Chain direction perpendicular to plane of diagram

P2/c LiPO₃ can be prepared from a Li₂O-P₂O₅ glass by heating to the crystallization temperature of 486° C.^{*a*}

Lattice parameters (in Å) for LiPO₃

	a	b	С	eta
Cal.	13.00	5.30	16.31	98.8 ⁰
Exp. ^b	13.074	5.4068	16.452	99.00 ^o

^{*a*}Money and Hariharan, *Appl. Physics A* **88** 647 (2007)

^bMurashova and Chudinova, *Crystall. Rep.* **46** 942 (2001)

Phosphate chain materials: LiPO₃ **plus N**

 s_1 -Li₂PO₂N in *Pbcm* structure; 24 atom unit cell Chain direction perpendicular to plane of diagram

Phosphate chain materials: s_1 -LiPO₃ and s_1 -Li₂PO₂N

 s_1 -LiPO₃ in *Pbcm* structure; 20 atom unit cell Chain direction perpendicular to plane of diagram 2a **2c** Ball colors: **•**=Li, **•**=P, **•**=O. Single chain view

s₁-Li₂PO₂N in *Pbcm* structure; 24 atom unit cell Chain direction perpendicular to plane of diagram

Phosphate chain materials: LiPO $_3$ and Li $_2$ PO $_2$ N

Comparison of different structural forms of LiPO₃ and Li₂PO₂N in terms of their heats of formation (ΔH_{cal}) and volumes \mathcal{V}_{cal} (per formula unit).

Material	Structure	$\Delta H_{\rm cal}~({\rm eV})$	$\mathcal{V}_{\mathrm{cal}}(\mathring{A}^3)$	
LiPO ₃	P2/c [#13]	-12.80	56	
s_1 -LiPO ₃	Pbcm [#57]	-12.73	58	
s_2 -LiPO $_3$	Aem2 [#39]	-12.73	58	
s_3 -LiPO $_3$	<i>Pmc</i> 2 ₁ [#26]	-12.70	67	
s_1 -Li ₂ PO ₂ N	Pbcm [#57]	-12.42	57	
s_2 -Li ₂ PO ₂ N	Aem2 [#39]	-12.45	57	
s_3 -Li ₂ PO ₂ N	<i>Pmc</i> 2 ₁ [#26]	-12.08	66	

s_1 -Li₂PO₂N: Can it be made?

Possible exothermic reaction pathways:

 $\frac{1}{5}P_2O_5 + \frac{1}{5}P_3N_5 + Li_2O \rightarrow Li_2PO_2N + 2.5 \text{ eV}.$

 $LiPO_3 + Li_3N \rightarrow \underline{Li_2PO_2N} + Li_2O + 4.2 \text{ eV}.$

Lattice vibration in phosphate chain materials

Li

200

200

13

Li ion diffusion in P2/c LiPO₃

Vacancy diffusion path diagrams

Summary of migration energies (in eV)

	Vacancy			
	(c-a)-1	(c-a)-2	(b)	Interstitial
E_m	0.6	0.6	0.7	0.7

Summary of measured and calculated conductivity parameters in $Li_x PO_y N_z$ materials

Measured activation energies E_A^{exp} compared with calculated migration energies for vacancy (E_m^{cal} (vac.)) and interstitial (E_m^{cal} (int.)) mechanisms and vacancy-interstitial formation energies (E_f^{cal}). All energies aire given in eV.

Material	Form	E_A^{\exp}	E_m^{cal} (vac.)	E_m^{cal} (int.)	E_f^{cal}	E_A^{cal}
γ -Li ₃ PO ₄	single crystal ^a	1.23, 1.14	0.7, 0.7	0.4, 0.3	1.7	1.3, 1.1
Li _{2.88} PO _{3.73} N _{0.14}	poly cryst.	0.97				
Li _{3.3} PO _{3.9} N _{0.17}	amorphous	0.56				
Li _{1.35} PO _{2.99} N _{0.13}	amorphous	0.60				
LiPO ₃	poly cryst.	1.4	0.6, 0.7	0.7	1.2	1.1-1.2
LiPO ₃	amorphous	0.76-1.2				
s_1 -Li ₂ PO ₂ N	single crystal		0.5, 0.6		1.7	1.3-1.5
LiPN ₂	poly cryst.	0.6	0.4		2.5	1.7
Li ₇ PN ₄	poly cryst.	0.5				

Summary of results so far

Open questions on LiPON materials and some results

• What are the Li ion migration mechanisms?

For crystalline materials studied so far, Li ion migration via vacancy and interstitial mechanisms are found to be $E_m = 0.3 - 0.7$ eV.

• Which phosphonitride structures and stoichiometries are the most stable and which optimize Li ion conductivity?

We have identified several stable/meta-stable phosphonitride chain structures having the stoichiometry Li_2PO_2N , the most stable of which are characterized by a planar -N-P-N-P- backbone.

These highly symmetric structures have yet to be experimentally realized.

What is the relationship between the ordered and disordered structures?
Ongoing work on mixed crystals of stoichiometries η-Li₂PO₂N+ (1-η)LiPO₃ suggest a competition between increasing the number of mobile ions and trapping effects of inhomogeneous environments.

