
These codes have been compared with each other and with other independent
codes, and for most materials the agreement is excellent. However, three example
materials serve to illustrate the discrepancy. These materials use the PAW basis
and projector function parameters listed in Table I.

TABLE I PAW parameters used in calculations: the pseudopotential radius ra
c

(in bohr), list of shell designations n1l1(rm1)n2l2(rm2) . . . of basis and projector
functions used in the calculation and corresponding radii rmi

(in bohr) used to
match the all-electron and pseudo radial wavefunctions. The symbol ε indicates
the use of unbound basis functions with energies ε = 2.0, 0.0, and 3.0 Ry for F,
Si, and Cu, respectively.

Atom ra
c {nili(rmi

)}
Li 1.7 1s(1.4) 2s(1.7) 2p(1.7)
F 1.5 2s(1.5) εs(1.5) 2p(1.5) εp(1.5)

Si (valence) 2.0 3s(2.0) 3p(2.0) εd(2.0)
Si (semicore) 1.5 2s(1.5) 3s(1.5) 2p(1.5) 3p(1.5)

Cu 2.3 3s(1.5) 4s(2.2) 3p(1.5) 4p(2.2)
3d(1.5) εd(2.2)

The first example is the highly ionic material LiF in the rock-salt structure. Figure
1 shows plots of electronic energy versus cubic lattice parameter a, comparing the
PAW results from both PAW codes with the all-electron results generated by the
WIEN2k code.8 In general there is excellent agreement among all of the results,
with the obvious exception of the ABINIT results for the GGA functional, where
the equilibrium lattice constant is found to be 0.006 nm larger than that of the
others.

Introduction

The tools available for detailed first-principles studies of materials have benefited
enormously from the development of several international collaborations engaged
in developing open source electronic structure code packages. These collabora-
tions have resulted in well-designed shared codes which incorporate many of the
best “state of the art” methodologies. Validation is an important aspect of code
development and most of the collaboration teams have incorporated internal tests
as part of their development procedures. The availability of several independently
developed codes, provides the opportunity for further testing and validation.

The present poster deals with the identification and analysis of a particular dis-
crepancy between two independent codes in their implementation the projector
augmented wave (PAW) method developed by Blöchl.1 We show that the discrep-
ancy can be traced to a slight formalism difference in the two implementations.
Since one of the codes (ABINIT)2 is widely used and because our analysis may
be relevant to some of the other codes which have adopted the PAW method, we
thought it useful to present our findings.

Calculational Methods

All calculations were performed within the framework of density functional theory3

using exchange correlation functionals with either the local density approxima-
tion (LDA),4 or the generalized gradient approximation (GGA).5 The indepen-
dent codes used for the comparison of PAW implementations are PWPAW6 and
ABINIT2 using the same PAW basis and projector functions generated using the
ATOMPAW code7 and the atompaw2abinit converter program available at the
ABINIT website.
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Formalism

The basic idea developed by Blöchl1 can be summarized in terms of the PAW expression of the
valence electron energy of the system as a combination of smooth contributions evaluated over
all space plus a sum of atom-centered terms which contribute within “augmentation” spheres, of
radii ra

c about each atomic site a:

Evale = Ẽvale︸︷︷︸
pseudo-energy

+
∑

a

(
Ea

vale − Ẽa
vale

)
︸ ︷︷ ︸

atom-centered corrections

. (1)

In principle, the pseudo-energy contributions within each augmentation sphere are canceled out
of the expression by the atom-centered pseudo-energy Ẽa

vale and replaced by the atom-centered
full nodal valence energy Ea

vale. Provided that the cancellation is well approximated, there is
considerable freedom in the formulation of pseudofunctions within the augmentation spheres.
Consequently, there are some variations in the detailed formulations of the PAW method described
in the literature. The ABINIT formulation9 follows that of Kresse10 which, apart from regrouping
of the terms in the expressions, differs from the original formulation of Blöchl in the treatment
of the pseudo exchange-correlation contributions. In particular, denoting by n(r) and nc(r) the
valence and core electron fully nodal charge densities and by ñ(r) and ñc(r) the corresponding
valence and core electron pseudo-densities, Blöchl’s form of the exchange-correlation energies
can be expressed in terms of the functional dependencies:

EB
xc = Exc[ñ + ñc] +

∑
a

(Ea
xc[n

a + na
c ]− Ea

xc[ñ
a + ña

c ]) . (2)

Including the smooth core pseudo-densities in the evaluation of the functional follows the notion
of the non-linear core correction introduced by Louie et. al11 which has been demonstrated to
work well for norm-conserving pseudopotentials and also works well for the PAW formalism. On
the other hand Kresse’s version of the exchange-correlation energies has the form

EK
xc = Exc[ñ + ñc + n̂] +

∑
a

(Ea
xc[n

a + na
c ]− Ea

xc[ñ
a + ña

c + n̂a]) . (3)

Here the extra term n̂(r) is the valence compensation charge, which can be defined in the notation
of references [10] and [9] to be

n̂(r) =
∑

aijLM

ρa
ijQ̂

aLM
ij (r), (4)

where a is the atomic site index, ij are basis and projector function indices and LM are spherical
harmonic indices.
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FIG. 1 Plots of electronic energy (E) of LiF as a function of lattice constant (a) determined from
the WIEN2k, PWPAW, and ABINIT codes, comparing LDA (left plot) and GGA (right plot) re-
sults.

The second example is Si in the diamond
structure is shown in Fig. 2. In this case,
only the GGA results are presented for two
different basis and projector sets – “valence”
and “semicore” defined in Table I. We see
that while the “valence” basis set gives re-
sults in good agreement between WIEN2k,
PWPAW, and ABINIT, the “semicore” ba-
sis set used with the ABINIT code results
in a discrepancy compared the other results.
While this discrepancy is not as large as
the discrepancy for the GGA functional re-
sults of LiF, it is larger than it should be if
the codes were performing the same calcu-
lations with the same input parameters, as
designed.
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FIG. 2 Plot of the electronic energy (E) of
Si as a function of lattice constant (a) calcu-
lated using the GGA functional, comparing
results using 3 codes and 2 different PAW
basis and projector sets as explained in Ta-
ble I and in the text.

The third example of Cu will be shown later. These three examples show extreme examples
of the discrepancies between the two codes. By contrast, there are many other materials which
show excellent agreement between the two codes. As we will show, the origin of the discrepancies
turns out to be due to a subtle difference in formalisms.



While the inclusion of compensation charge density n̂(r) is essential to correctly
represent the Coulombic interactions of the system, it is not obvious that n̂(r)

has any physical meaning in the argument of exchange-correlation functionals
which are based on either a local density approximation (LDA) or a generalized
gradient approximation (GGA). For these functionals, at any given spatial point r,
the exchange-correlation contribution depends on the density (and its gradient in
the case of GGA) at that point. Formally, all pseudofunction contributions within
the augmentation sphere, cancel out of the energy and Hamiltonian expressions,
so that in general, the presence of the compensation charge in the exchange-
correlation functional the expression should do no harm. However, in some cases,
such as those presented in the introduction, inclusion of n̂(r) in the argument of
the pseudo exchange-correlation functional can introduce non-canceling errors as
will be demonstrated in more detail in below.

Examples

In most of our calculations, the squared sinc function was used for the compen-
sation charge shape:

gL(r) =




NLrL

(
sin(πr/ra

c )

πr/ra
c

)2

for r ≤ ra
c

0 for r > ra
c

, (6)

where NL is a normalization constant. We also considered the use of a Bessel
function shape of the form:10

gB
L(r) =




NL

[
jL

(
xL1r

rcomp

)
− xL1j

′
L(xL1)

xL2j′L(xL2)
jL

(
xL2r

rcomp

)]
for r ≤ rcomp

0 for r > rcomp

, (7)

where xLi denotes the ith zero of the spherical Bessel function jL(x) and NL

denotes a normalization constant. Kresse et al. recommend that the radius pa-
rameter be chosen such that ra

c/rcomp ≈ 1.2.

The coefficients ρa
ij are determined from the Bloch pseudowavefunctions Ψ̃nk(r)

and the projector functions p̃a
i (r) by the expression

ρa
ij =

∑

nk

fnk〈Ψ̃nk|p̃a
i 〉〈p̃a

j |Ψ̃nk〉, (1)

where fnk represents the sampling weight and occupancy of the Bloch state. The
compensation spatial functions Q̂aLM

ij (r) are localized within the augmentation
sphere of atom a and have the form

Q̂aLM
ij (r) ≡ qLM

ij gL(|r−Ra|)YLM(r̂−Ra), (2)

where YLM(r̂−Ra) denotes a spherical harmonic function, qLM
ij is a coefficient

representing the LM th moment associated with the pair of basis functions i and
j, and gL(|r−Ra|) denotes a radial shape function with the properties

gL(r) ≡ 0 for r ≥ ra
c and

∫ ra
c

0

dr r2+LgL(r) = 1. (3)

The purpose of the compensation charge density n̂(r) is to add the correct amount
of charge moments to the valence pseudo-density

ñ(r) ≡
∑

nk

fnk|Ψ̃nk(r)|2 (4)

so that outside the augmentation region of all the atoms, the Coulomb (or Hartree)
potential for the sum of the valence pseudo and compensation charge densities
ñ(r) + n̂(r) is the same as that for the fully nodal valence electron density n(r):

VH(r) =

∫
d3r′

ñ(r′) + n̂(r′)
|r− r′|

|r−Ra|>ra
c=

∫
d3r′

n(r′)
|r− r′|. (5)



FIG. 4 GGA exchange-correlation
potentials for Cu using ra

c = 2.3

bohr, comparing functionals of all-
electron density (nc + n), Blöchl’s
pseudodensity (ñc + ñ), and Kresse’s
pseudodensity (ñc + ñ + n̂) us-
ing the squared sinc compensation
charge shape, and (ñc + ñ + n̂B) us-
ing the Bessel function compensa-
tion charge shape.
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Figure 4 compares the GGA exchange-correlation functionals of Cu constructed
using Blöchl’s form and Kresse’s form with two different compensation charge
shapes both generated using the ATOMPAW code. In this example, we see that
for using the Kresse form of the exchange-correlation treatment, the Bessel shape
function for the compensation charge is numerically much better behaved than is
the squared sinc function. However, it is again clear that the Blöchl form of the
exchange-correlation treatment (using µxc[ñc + ñ]) converges most smoothly to
the all-electron function in the neighborhood of the augmentation sphere bound-
ary.

These examples of discontinuous behavior of pseudo exchange-correlation po-
tentials are obviously extreme cases, chosen to illustrate the problem clearly. In
the examples shown in Figs. 2-4, it is apparent that the discontinuities in the
pseudo exchange-correlation potentials near ra

c seem to be the likely cause of the
discrepant structural results presented here.

In order to verify our analysis of this problem we have written modified versions
of the ATOMPAW, ABINIT, and PWPAW codes, allowing for the treatment of
both the Blöchl and Kresse formulations of exchange-correlation energies (Eqs. 6
and 7) and the corresponding Hamiltonian terms within each of the codes. Figure
5 shows the results for Cu using the exchange-correlation functional, comparing
the both the Blöchl and Kresse forms using both of the modified codes.
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FIG.3

Plots of radial charge densities (top panel), Hartree potentials (second panel), and
GGA exchange-correlation potentials (lower panel) for Li (left) and Si (right). In
both cases, semi-core states were included in the basis configuration and the com-
pensation charge density n̂ is constructed using the squared sinc function defined
in Eq. (6).

In both of the examples shown in Fig. 3, we see that the compensation charge
density causes the Hartree pseudo-potential VH [ñ + n̂] to converge smoothly to
Hartree full potential VH [n] as r → ra

c . On the other hand, for the exchange-
correlation pseudo-potential in the Kresse formulation, µxc[ñc + ñ + n̂] shows
unphysical behavior near r ≤ ra

c due to a significant discontinuity in the curvature
of [ñc + ñ + n̂] in that region while in the Blöchl formulation, µxc[ñc + ñ] is well
behaved and converges smoothly to the full potential µxc[nc + n] as r → ra

c .



We expect that this problem will become even more serious as more complicated
functionals are developed which can depend on higher order density derivatives.13

In practice, the error we have identified can be ameliorated by choosing other radial
shape functions than the squared sinc function defined in Eq. (6). The example for
Cu using the Bessel function shape compensation charge defined in Eq. (7) illustrates
this effect quite well.

TABLE II Ground state param-
eters for LiF, Si, and Cu deter-
mined from fit of calculations to
the Murnagham12 equation of state,
listing the equilibrium lattice con-
stant a0 (nm) and bulk modulus
B (GPa). The notation (B) and
(K) denote the Blöchl and Kresse
formalisms respectively For Si,
(v) and (s) denote the valence and
semicore basis sets respectively.
Two calculations for Cu were per-
formed using the Bessel function
compensation charge shape (Eq.
7) with the notation [Bes]; oth-
erwise, the squared sinc shape
(Eq. 6) was used.

LDA GGA
Method a0 B a0 B

LiF
WIEN2k 0.391 87 0.407 66

PWPAW (B) 0.392 85 0.408 66
ABINIT (K) 0.392 85 0.414 66

Si
WIEN2k 0.547 87

PWPAW (B) (v) 0.547 89
ABINIT (K) (v) 0.547 88
PWPAW (B) (s) 0.547 88
ABINIT (K) (s) 0.549 87

Cu
WIEN2k 0.355 170 0.366 130

PWPAW (B) 0.356 160 0.367 120
ABINIT (B) 0.356 160 0.367 120

ABINIT (B) [Bes] 0.367 120
ABINIT (K) [Bes] 0.368 120

PWPAW (K) 0.375 110
ABINIT (K) 0.357 160 0.374 110
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FIG. 5 Comparison of binding en-
ergy curves for Cu using the GGA
exchange-correlation functional us-
ing the Blöchl (B) and Kresse (K)
formalisms and the modified PW-
PAW and ABINIT codes. Also
shown are results using the Bessel
compensation charge shape (Eq. 7)
in both schemes using the ABINIT
code.

Here we see that all results using the Blöchl formalism are in excellent numer-
ical agreement. The results from the two codes using the Kresse form with
the squared sinc function have a relatively small numerical discrepancy with
each other, undoubtedly due to slightly different treatments of the discontinu-
ous exchange-correlation functional. The ABINIT code is also able to use the
Bessel shape compensation charge (Eq. (7)) and those results are also shown in
Fig. 5. In this case, both the Kresse and Blöchl forms are in good agreement
with each other and with the results of the Blöchl form using the squared sinc
function.

Table II summarizes the numerical results of all of the test cases considered in this
study. From this table and from the binding energy curves given in Fig. 1, 2, and
5, it is clear that the original Blöchl PAW formalism for the exchange-correlation
contributions (2) avoids numerical difficulties that can occur with the Kresse for-
mulation (3). In order to clarify the issue, we have chosen extreme examples of
the problem. From these examples, it is apparent that the origin of the problem
is due to the fact that the the exchange-correlation functions are very sensitive to
the local shape of the density. Since these functionals were designed5,6 to repre-
sent physical densities it is perhaps not surprising that the arbitrary shape of the
valence compensation charge can cause spurious exchange-correlation contribu-
tions particularly when it is significantly larger than the physical density.
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Summary and Conclusions

As a result of this analysis, we conclude that the Blöchl formulation of the
exchange-correlation terms of the PAW method provides the best numerical sta-
bility. In principle, using the compensation charge contributions only for the
Coulombic contributions for which they were designed, allows for greater choice
in the shape functions which can give both physical results and optimized plane
wave convergence parameters. Furthermore, the numerical evaluation of the
exchange-correlation terms can be done more efficiently in the Blöchl formu-
lation compared to the Kresse formulation since the evaluation of n̂ within the
exchange-correlation calculations is relatively time-consuming. A new version
of ABINIT has been prepared and will be available in production release 6.1 and
higher which has the option of using the Blöchl exchange-correlation formula-
tion.

While we have argued that the Kresse formulation of the exchange-correlation
terms of the PAW method is poorly motivated and can lead to numerical dif-
ficulties, we would like to stress that the problems we have identified affect a
relatively small number of calculations. With careful control of the parameters,
both the Blöchl and Kresse formulations of the PAW method can produce results
consistent with all-electron results. The experiences learned in this analysis rein-
forces the fact that the quantitative accuracy of PAW and other pseudopotential
methods relies on careful scrutiny and testing of the pseudopotential parameters
used in the calculations. The ABINIT website (http://www.abinit.org)
gives the following excellent advice: “Pseudopotentials should always be tested
in well-known situations, before using them for predictions.”
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