PHY 712 - Problem Set \# 15

Complete reading of Chapter 5 of Jackson.
You may choose one of the following problems. (Extra credit for working both problems.)

1. Work Problem \#5.13 in Jackson.
2. Consider a uniform cylindrical current expressed in cylindrical equations in the form:

$$
\begin{equation*}
\mathbf{J}(\rho) \equiv j_{0} \Theta(a-\rho) \hat{\mathbf{z}}, \tag{1}
\end{equation*}
$$

where j_{0} is a constant current density, a is the radius of the cylinder, and $\Theta(a-\rho)$ denotes the Heaviside function.
(a) Find the vector potential \mathbf{A} in the Coulomb gauge $(\nabla \cdot \mathbf{A}=0)$. Assuming the appropriate boundary conditions at $\rho=a$, find the form of \mathbf{A} for both $\rho<a$ and for $\rho>a$ up to an arbitrary constant.
(b) Find the magnetic field \mathbf{B} for both $\rho<a$ and for $\rho>a$.
(c) Sketch $\mathbf{A}(\rho)$ and $\mathbf{B}(\rho)$ as a function of ρ.

