PHY 712 – Problem Set # 15

Complete reading of Chapter 5 of Jackson.

You may choose one of the following problems. (Extra credit for working both problems.)

1. Work Problem #5.13 in Jackson.

2. Consider a uniform cylindrical current expressed in cylindrical equations in the form:

 \[\mathbf{J}(\rho) \equiv j_0 \Theta(a - \rho) \mathbf{\hat{z}}, \]

 where \(j_0 \) is a constant current density, \(a \) is the radius of the cylinder, and \(\Theta(a - \rho) \) denotes the Heaviside function.

 (a) Find the vector potential \(\mathbf{A} \) in the Coulomb gauge (\(\nabla \cdot \mathbf{A} = 0 \)). Assuming the appropriate boundary conditions at \(\rho = a \), find the form of \(\mathbf{A} \) for both \(\rho < a \) and for \(\rho > a \) up to an arbitrary constant.

 (b) Find the magnetic field \(\mathbf{B} \) for both \(\rho < a \) and for \(\rho > a \).

 (c) Sketch \(\mathbf{A}(\rho) \) and \(\mathbf{B}(\rho) \) as a function of \(\rho \).