PHY 712 - Problem Set \# 8

Read Chapter 3 of Jackson.

1. Convince yourself that Eqs. 3.62 and 3.70 are correct by expanding the expressions to second order. That is, verify the following:

$$
\begin{equation*}
P_{l}\left(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}^{*}(\hat{\mathbf{r}}) Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4 \pi}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}^{*}(\hat{\mathbf{r}}) Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right) \tag{2}
\end{equation*}
$$

2. Consider a charge distribution of the form:

$$
\begin{equation*}
\rho(r, \theta, \phi)=\rho_{0} r^{2} e^{-\alpha r} \cos ^{2}(\theta), \tag{3}
\end{equation*}
$$

where ρ_{0} and α are constants.
(a) Express $\rho(r, \theta, \phi)$ as a sum of radial functions time spherical harmonic functions in the form:

$$
\begin{equation*}
\rho(r, \theta, \phi)=\sum_{l m} \rho_{l m}(r) Y_{l m}(\theta, \phi) . \tag{4}
\end{equation*}
$$

(b) Using the results of the previous problem, find the corresponding electrostatic potential which vanishes at ∞.

