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Notes for Lecture #13

Dipole and quadrupole �elds

The dipole moment is de�ned by
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The last term of the �eld expression follows from the following derivation. We note that Eq.
(3) is poorly de�ned as r ! 0, and consider the value of a small integral of E(r) about zero.
(For this purpose, we are supposing that the dipole p is located at r = 0.) In this case we
will approximate
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This result follows from the Divergence theorm:Z
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In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate if we
choose V � x̂�(r) for the x� component for example:
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Now, we notice that the electrostatic potential can be determined from the charge density
�(r) according to:
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We also note that the unit vector can be written in terms of spherical harmonic functions:
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Therefore, when we evaluate the integral over solid angle 
 in Eq. (5), only the l = 1 term
contributes and the e�ect of the integration reduced to the expression:
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The choice of r< and r> is a choice between the integration variable r0 and the sphere radius
R. If the sphere encloses the charge distribution �(r0), then r< = r0 and r> = R so that Eq.
(12) becomes
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