Notes for Lecture \#13

Dipole and quadrupole fields

The dipole moment is defined by

$$
\begin{equation*}
\mathbf{p}=\int d^{3} r \rho(r) \mathbf{r} \tag{1}
\end{equation*}
$$

with the corresponding potential

$$
\begin{equation*}
\Phi(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

and electrostatic field

$$
\begin{equation*}
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{3 \hat{\mathbf{r}}(\mathbf{p} \cdot \hat{\mathbf{r}})-\mathbf{p}}{r^{3}}-\frac{4 \pi}{3} \mathbf{p} \delta^{3}(\mathbf{r})\right\} . \tag{3}
\end{equation*}
$$

The last term of the field expression follows from the following derivation. We note that Eq. (3) is poorly defined as $r \rightarrow 0$, and consider the value of a small integral of $\mathbf{E}(\mathbf{r})$ about zero. (For this purpose, we are supposing that the dipole \mathbf{p} is located at $\mathbf{r}=\mathbf{0}$.) In this case we will approximate

$$
\begin{equation*}
\mathbf{E}(\mathbf{r} \approx \mathbf{0}) \approx\left(\int_{\text {sphere }} \mathbf{E}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}\right) \delta^{\mathbf{3}}(\mathbf{r}) \tag{4}
\end{equation*}
$$

First we note that

$$
\begin{equation*}
\int_{r \leq R} \mathbf{E}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}=-\mathbf{R}^{2} \int_{\mathbf{r}=\mathbf{R}} \Phi(\mathbf{r}) \hat{\mathbf{r}} \mathbf{d} \Omega \tag{5}
\end{equation*}
$$

This result follows from the Divergence theorm:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot \mathcal{V} \mathbf{d}^{3} \mathbf{r}=\int_{\text {surface }} \mathcal{V} \cdot \mathbf{d A} \tag{6}
\end{equation*}
$$

In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate if we choose $\mathcal{V} \equiv \hat{\mathbf{x}} \boldsymbol{\Phi}(\mathbf{r})$ for the x - component for example:

$$
\begin{equation*}
\int_{r \leq R} \nabla \Phi(\mathbf{r})=\hat{\mathbf{x}} \int_{\mathbf{r} \leq \mathbf{R}} \nabla \cdot(\hat{\mathbf{x}} \Phi) \mathbf{d}^{3} \mathbf{r}+\hat{\mathbf{y}} \int_{\mathbf{r} \leq \mathbf{R}} \nabla \cdot(\hat{\mathbf{y}} \Phi) \mathbf{d}^{3} \mathbf{r}+\hat{\mathbf{z}} \int_{\mathbf{r} \leq \mathbf{R}} \nabla \cdot(\hat{\mathbf{z}} \Phi) \mathbf{d}^{3} \mathbf{r} \tag{7}
\end{equation*}
$$

which is equal to

$$
\begin{equation*}
\int_{r=R} \Phi(\mathbf{r}) R^{2} d \Omega((\hat{\mathbf{x}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{x}}+(\hat{\mathbf{y}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{y}}+(\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{z}})=\int_{r=R} \Phi(\mathbf{r}) R^{2} d \Omega \hat{\mathbf{r}} \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{r \leq R} \mathbf{E}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}=-\int_{\mathbf{r} \leq \mathbf{R}} \nabla \Phi(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}=-\mathbf{R}^{2} \int_{\mathbf{r}=\mathbf{R}} \Phi(\mathbf{r}) \hat{\mathbf{r}} \mathrm{d} \Omega \tag{9}
\end{equation*}
$$

Now, we notice that the electrostatic potential can be determined from the charge density $\rho(\mathbf{r})$ according to:

$$
\begin{equation*}
\Phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{4 \pi \epsilon_{0}} \sum_{l m} \frac{4 \pi}{2 l+1} \int d^{3} r^{\prime} \rho\left(\mathbf{r}^{\prime}\right) \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}^{*}(\hat{\mathbf{r}}) Y_{l m}\left(\hat{\mathbf{r}}^{\prime}\right) . \tag{10}
\end{equation*}
$$

We also note that the unit vector can be written in terms of spherical harmonic functions:

$$
\hat{\mathbf{r}}=\left\{\begin{array}{l}
\sin (\theta) \cos (\phi) \hat{\mathbf{x}}+\sin (\theta) \sin (\phi) \hat{\mathbf{y}}+\cos (\theta) \hat{\mathbf{z}} \tag{11}\\
\sqrt{\frac{4 \pi}{3}}\left(Y_{1-1}(\hat{\mathbf{r}}) \frac{\hat{\mathbf{x}}+\hat{\mathbf{y}}}{\sqrt{2}}+Y_{11}(\hat{\mathbf{r}}) \frac{\hat{\mathbf{x}}-\hat{\mathbf{y}}}{\sqrt{2}}+Y_{10}(\hat{\mathbf{r}}) \hat{\mathbf{z}}\right)
\end{array}\right.
$$

Therefore, when we evaluate the integral over solid angle Ω in Eq. (5), only the $l=1$ term contributes and the effect of the integration reduced to the expression:

$$
\begin{equation*}
-R^{2} \int_{r=R} \Phi(\mathbf{r}) \hat{\mathbf{r}} \mathbf{d} \Omega=-\frac{\mathbf{1}}{4 \pi \epsilon_{\mathbf{0}}} \frac{4 \pi \mathbf{R}^{2}}{3} \int \mathrm{~d}^{3} \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) \frac{\mathbf{r}_{<}}{\mathbf{r}_{>}^{2}} \hat{\mathbf{r}}^{\prime} \tag{12}
\end{equation*}
$$

The choice of $r_{<}$and $r_{>}$is a choice between the integration variable r^{\prime} and the sphere radius R. If the sphere encloses the charge distribution $\rho\left(\mathbf{r}^{\prime}\right)$, then $r_{<}=r^{\prime}$ and $r_{>}=R$ so that Eq. (12) becomes

$$
\begin{equation*}
-R^{2} \int_{r=R} \Phi(\mathbf{r}) \hat{\mathbf{r}} \mathrm{d} \Omega=-\frac{1}{4 \pi \epsilon_{\mathbf{0}}} \frac{4 \pi \mathbf{R}^{2}}{3} \frac{\mathbf{1}}{\mathbf{R}^{2}} \int \mathbf{d}^{3} \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) \mathbf{r}^{\prime} \hat{\mathbf{r}^{\prime}} \equiv-\frac{\mathbf{p}}{3 \varepsilon_{\mathbf{0}}} \tag{13}
\end{equation*}
$$

