
February 28, 2000

Notes for Lecture #18

Vector potentials in magnetostatics

The vector potential corresponding to a current density distribution J(r) is given by
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This expression is useful if the current density J(r) is con�ned within a �nite region of
space. Consider the following example corresponding to a rotating charged sphere of radius
a, with �0 denoting the uniform charge density within the sphere and ! denoting the angular
rotation of the sphere:
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In order to evaluate the vector potential (1) for this problem, we can make use of the
expansion:
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we see that the angular integral result takes the simple form:
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Therefore the vector potential for this system is:
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which can be evaluated as:
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As another example, consider the current associated with an electron in the jnlm = 211i
state of a H atom:
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where a here denotes the Bohr radius. Using arguments similar to those above, we �nd that
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This expression can be integrated to give:
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