Notes for Lecture \#19

Magnetic dipole field

These notes are very similar to the notes for Lecture \#13 on the electric dipole field.

The magnetic dipole moment is defined by

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{1}
\end{equation*}
$$

with the corresponding potential

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

and magnetostatic field

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi}\left\{\frac{3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}}{r^{3}}+\frac{8 \pi}{3} \mathbf{m} \delta^{3}(\mathbf{r})\right\} . \tag{3}
\end{equation*}
$$

The last term of the field expression follows from the following derivation. We note that Eq. (3) is poorly defined as $r \rightarrow 0$, and consider the value of a small integral of $\mathbf{B}(\mathbf{r})$ about zero. (For this purpose, we are supposing that the dipole \mathbf{m} is located at $\mathbf{r}=\mathbf{0}$.) In this case we will approximate

$$
\begin{equation*}
\mathbf{B}(\mathbf{r} \approx \mathbf{0}) \approx\left(\int_{\text {sphere }} \mathbf{B}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}\right) \delta^{\mathbf{3}}(\mathbf{r}) \tag{4}
\end{equation*}
$$

First we note that

$$
\begin{equation*}
\int_{r \leq R} \mathbf{B}(\mathbf{r}) d^{3} r=R^{2} \int_{r=R} \hat{\mathbf{r}} \times \mathbf{A}(\mathbf{r}) d \Omega . \tag{5}
\end{equation*}
$$

This result follows from the divergence theorm:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot \mathcal{V} \mathbf{d}^{3} \mathbf{r}=\int_{\text {surface }} \mathcal{V} \cdot \mathbf{d} \mathbf{A} \tag{6}
\end{equation*}
$$

In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of $\nabla \times \mathbf{A}$ since $\nabla \times \mathbf{A}=\hat{\mathbf{x}}(\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{y}}(\hat{\mathbf{y}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{z}}(\hat{\mathbf{z}} \cdot(\nabla \times \mathbf{A}))$. Note that $\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A})=$ $-\nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A})$ and that we can use the Divergence theorem with $\mathcal{V} \equiv \hat{\mathbf{x}} \times \mathbf{A}(\mathbf{r})$ for the $x-$ component for example:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A}) d^{3} r=\int_{\text {surface }}(\hat{\mathbf{x}} \times \mathbf{A}) \cdot \hat{\mathbf{r}} d A=\int_{\text {surface }}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot \hat{\mathbf{x}} d A \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{r \leq R}(\nabla \times \mathbf{A}) d^{3} r=-\int_{r=R}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot(\hat{\mathbf{x}} \hat{\mathbf{x}}+\hat{\mathbf{y}} \hat{\mathbf{y}}+\hat{\mathbf{z}} \hat{\mathbf{z}}) d A=R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega \tag{8}
\end{equation*}
$$

which is identical to Eq. (5). Now, expressing the vector potential in terms of the current density:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, \tag{9}
\end{equation*}
$$

we can use the identity,

$$
\begin{equation*}
\int d \Omega \frac{\hat{\mathbf{r}}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{4 \pi}{3} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} \tag{10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi R^{2}}{3} \int d^{3} r^{\prime} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{11}
\end{equation*}
$$

If the sphere R contains the entire current distribution, then $r_{>}=R$ and $r_{<}=r^{\prime}$ so that (11) becomes

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi}{3} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \equiv \frac{8 \pi}{3} \mathbf{m} \tag{12}
\end{equation*}
$$

