## Notes for Lecture #19

## Magnetic dipole field

These notes are very similar to the notes for Lecture #13 on the electric dipole field.

The magnetic dipole moment is defined by

$$\mathbf{m} = \frac{1}{2} \int d^3 r' \mathbf{r}' \times \mathbf{J}(\mathbf{r}'), \tag{1}$$

with the corresponding potential

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2},\tag{2}$$

and magnetostatic field

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left\{ \frac{3\hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}}) - \mathbf{m}}{r^3} + \frac{8\pi}{3} \mathbf{m} \delta^3(\mathbf{r}) \right\}.$$
 (3)

The last term of the field expression follows from the following derivation. We note that Eq. (3) is poorly defined as  $r \to 0$ , and consider the value of a small integral of  $\mathbf{B}(\mathbf{r})$  about zero. (For this purpose, we are supposing that the dipole  $\mathbf{m}$  is located at  $\mathbf{r} = \mathbf{0}$ .) In this case we will approximate

$$\mathbf{B}(\mathbf{r}\approx\mathbf{0})\approx\left(\int_{\text{sphere}}\mathbf{B}(\mathbf{r})\mathbf{d}^{\mathbf{3}}\mathbf{r}\right)\delta^{\mathbf{3}}(\mathbf{r}).$$
(4)

First we note that

$$\int_{r \le R} \mathbf{B}(\mathbf{r}) d^3 r = R^2 \int_{r=R} \hat{\mathbf{r}} \times \mathbf{A}(\mathbf{r}) \, d\Omega.$$
(5)

This result follows from the divergence theorm:

$$\int_{\text{vol}} \nabla \cdot \mathcal{V} \mathbf{d}^3 \mathbf{r} = \int_{\text{surface}} \mathcal{V} \cdot \mathbf{d} \mathbf{A}.$$
 (6)

In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of  $\nabla \times \mathbf{A}$ since  $\nabla \times \mathbf{A} = \hat{\mathbf{x}} (\hat{\mathbf{x}} \cdot (\nabla \times \mathbf{A})) + \hat{\mathbf{y}} (\hat{\mathbf{y}} \cdot (\nabla \times \mathbf{A})) + \hat{\mathbf{z}} (\hat{\mathbf{z}} \cdot (\nabla \times \mathbf{A}))$ . Note that  $\hat{\mathbf{x}} \cdot (\nabla \times \mathbf{A}) = -\nabla \cdot (\hat{\mathbf{x}} \times \mathbf{A})$  and that we can use the Divergence theorem with  $\mathcal{V} \equiv \hat{\mathbf{x}} \times \mathbf{A}(\mathbf{r})$  for the x-component for example:

$$\int_{\text{vol}} \nabla \cdot (\hat{\mathbf{x}} \times \mathbf{A}) d^3 r = \int_{\text{surface}} (\hat{\mathbf{x}} \times \mathbf{A}) \cdot \hat{\mathbf{r}} dA = \int_{\text{surface}} (\mathbf{A} \times \hat{\mathbf{r}}) \cdot \hat{\mathbf{x}} dA.$$
(7)

Therefore,

$$\int_{r \le R} (\nabla \times \mathbf{A}) d^3 r = -\int_{r=R} (\mathbf{A} \times \hat{\mathbf{r}}) \cdot (\hat{\mathbf{x}} \hat{\mathbf{x}} + \hat{\mathbf{y}} \hat{\mathbf{y}} + \hat{\mathbf{z}} \hat{\mathbf{z}}) dA = R^2 \int_{r=R} (\hat{\mathbf{r}} \times \mathbf{A}) d\Omega$$
(8)

which is identical to Eq. (5). Now, expressing the vector potential in terms of the current density:  $\mathbf{T}(t)$ 

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|},\tag{9}$$

we can use the identity,

$$\int d\Omega \frac{\hat{\mathbf{r}}}{|\mathbf{r} - \mathbf{r}'|} = \frac{4\pi}{3} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}'}.$$
(10)

Therefore,

$$R^{2} \int_{r=R} (\hat{\mathbf{r}} \times \mathbf{A}) d\Omega = \frac{4\pi R^{2}}{3} \int d^{3}r' \, \frac{r_{<}}{r_{>}^{2}} \, \hat{\mathbf{r}'} \times \mathbf{J}(\mathbf{r}').$$
(11)

If the sphere R contains the entire current distribution, then  $r_{>} = R$  and  $r_{<} = r'$  so that (11) becomes

$$R^{2} \int_{r=R} \left( \hat{\mathbf{r}} \times \mathbf{A} \right) d\Omega = \frac{4\pi}{3} \int d^{3}r' \, \mathbf{r}' \times \mathbf{J}(\mathbf{r}') \equiv \frac{8\pi}{3} \mathbf{m}.$$
 (12)