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Notes for Lecture #19

Magnetic dipole �eld

These notes are very similar to the notes for Lecture #13 on the electric dipole �eld.

The magnetic dipole moment is de�ned by
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and magnetostatic �eld

B(r) =
�0

4�

(
3r̂(m � r̂)�m

r3
+

8�

3
mÆ3(r)

)
: (3)

The last term of the �eld expression follows from the following derivation. We note that Eq.
(3) is poorly de�ned as r ! 0, and consider the value of a small integral of B(r) about zero.
(For this purpose, we are supposing that the dipole m is located at r = 0.) In this case we
will approximate
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This result follows from the divergence theorm:Z
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In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of r�A
since r�A = x̂ (x̂ � (r�A))+ ŷ (ŷ � (r�A))+ ẑ (ẑ � (r�A)): Note that x̂ � (r�A) =
�r � (x̂�A) and that we can use the Divergence theorem with V � x̂�A(r) for the x�
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which is identical to Eq. (5). Now, expressing the vector potential in terms of the current
density:
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If the sphere R contains the entire current distribution, then r> = R and r< = r0 so that
(11) becomes
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