February 29, 2000

Notes for Lecture #20

Magnetic field due to electrons in the vicinity of a nucleus

According to the Biot-Savart law, the magnetic field produced by a current density J(r’) is

given by: T ,
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In this case, we assume that the current density is due to an electron in a bound atomic state
with quantum numbers |nlm;), as described by a wavefunction ¢, (r), where the azimuthal
quantum number m; is associated with a factor of the form e™?. For such a wavefunction
the quantum mechanical current density operator can be evaluated:

—eh , .
J(I‘,) - 2msa (zp”lmlvldjnlml - ﬂjnlml Vlwnlml) : (2)
Since the only complex part of this wavefunction is associated with the azimuthal quantum
number, this can be written:
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We need to use this current density in the Biot-Savart law and evaluate the field at the
nucleus (r = 0). The vector cross product in the numerator can be evaluated in spherical
polar coordinates as:
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Thus the magnetic field evaluated at the nucleus is given by the integral:
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In evaluating the integration over the azimuthal variable ¢', the X and ¥ components vanish
leaving the simple result:
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