
February 1, 2000

Notes for Lecture #4

Electrostatic energy

Section 1.11 in Jackson's text

The total electrostatic potential energy of interaction between point charges fqig at the
positions frig is given by
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In this expression, the �rst form explicitly counts all pairs, while the second form counts all
interactions and divides by 2 to compensate for double counting.

For a �nite system of charges, this expression can be evaluated directly, however, for a large
or in�nite system, the expression 1 does not converge and numerical tricks must be used to
evaluate the energy. In fact, for the in�nite system, one has an in�nite amount of charge
and the energy of interaction is unde�ned. If the system is neutral, it is possible to de�ne a
meaningful interaction energy by use of an Ewald transformation.

The basic idea of the Ewald approach is as follows. The error function erf(x) and its com-
plement erfc(x) are de�ned as:
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In this expression, the �rst term goes to a constant (
q
�=�) as r ! 0, but has a long range tail

as r !1. The second term has a singular behavior as r ! 0, but vanishes exponentially as
r !1. Thus, Ewald's idea is to replace a single divergent summation with two convergent
summations. The �rst summation has a convergent summation in the form of its Fourier
transform and the second has a convergent direct summation. Thus the calculation of the
electrostatic energy would be evaluated using:
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For an appropriate choice of the parameter �, the second summation in Eq. 4 converges
quickly and can be evaluated directly. The �rst term in the summation of Eq. 4 must be
transformed into Fourier space.

In order to described these summations explicitly, we assume that we have a periodic lattice
so that every ion can be located by ri = �� +T a location �� within a unit cell and a periodic
translation vector T, In this way, the summation becomes:1X
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where N denotes the number of unit cells in the system. Since we have a periodic system,
N is in�nite, but the energy per unit cell W=N is well de�ned. The other identity that we
must use is that a sum over lattice translations T may be transformed into an equivalent
sum over \reciprocal lattice translations" G according to the identity:
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where 
 denotes the unit cell volume. The proof of this relation is given in the appendix.

The �rst term of Eq. 4 thus becomes
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where the last term in Eq. 7 comes from subtracting out the self-interaction (i = j) term
from the complete lattice sum. Using the short hand notation, ��� � �� � ��, the lattice
sum can be evaluated:
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This becomes,
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where the last term, which is in�nite, comes from the G = 0 contribution.

If the last term of Eq. 9 cannot be eliminated, it is clear that the electrostatic energy is
in�nite. The term can be eliminated if and only if the system is neutral. Thus, it is only
meaningful to calculate the electrostatic energy of a neutral periodic system. If the actual
system has a net charge of Q � P� q�, we could calculate a meanful energy if we subtract the
interaction energy due to a uniform density of Q=
. Taking all of these terms into account,
we �nd the �nal Ewald expression to be:
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where the 0 in the summation over lattice translations T indicates that all self-interaction
terms should be omitted.

1Note that for any two lattice translationsTi and Tj, Ti �Tj = Tk, whereTk is also a lattice translation.



Appendix I { comments on lattice vectors and reciprocal lattice vectors

In this discussion, will assume we have a 3-dimensional periodic system. It can be easily
generalized to 1- or 2- dimensional systems. In general, a translation vector can be described
a linear combination of the three primitive translation vectors T1, T2, and T3:

T = n1T1 + n2T2 + n3T3; (11)

where fn1; n2; n3g are integers. Note that the unit cell volume 
 can be expressed in terms
of the primitive translation vectors according to:


 = jT1 � (T2 �T3)j: (12)

The reciprocal lattice vectors G can generally be written as a linear combination of the three
primitive reciprocal lattice vectors G1, G2, and G3:

G = m1G1 +m2G2 +m3G3; (13)

where fm1; m2; m3g are integers. The primitive reciprocal lattice vectors are determined
from the primitive translation vectors according to the identities:
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Note that the \volume" of the primitive reciprocal lattice is given by
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Some examples of this are given below.

\Proof" of Eq. 6

Consider the geometric series
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where the summation limit M will be taken in the limit M !1:
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The summation over all lattice translations n1T1 is due to the fact that sin(G1 � r=2) = 0
whenever r = n1T1. Carrying out the geometric summation in Eq. 6 for all three reciprocal
lattice vectors and taking the limit as in Eq. 17,X
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Finally, the right hand side of Eq. 18 can be simpli�ed by transforming the Æ functions into
their spatial form: X
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which is consistent with Eq. 6.



Appendix II { examples

In these examples, denote the length of the unit cell by a.

CsCl structure

There are two kinds of sites { �Cs = 0 and �Cl =
a
2
(x̂+ ŷ + ẑ).

T1 = ax̂ T2 = aŷ T3 = aẑ: (20)
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It is convenient to de�ne � � �2=a2. Also we will denote by q the unit charge. In these
terms, Eq. 10 becomes for this case:
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In this expression, the sum over � and � has a total of 4 contributions { 2 pairs of identical
contributions. For Na-Na or Cl-Cl interactions, ��� = 0 and q� = q� resulting in repulsive
contributions. For Na-Cl or Cl-Na interations, ��� = �a

2
(x̂+ ŷ + ẑ) and q� = q� resulting

in attractive contributions. This expression can be evaluated using Maple, which gives the
result
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NaCl structure

There are two kinds of sites { �Na = 0 and �Cl =
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