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Notes for Lecture #7

Orthogonal function expansions and Green's functions

Suppose we have a \complete" set of orthogonal functions fun(x)g de�ned in the interval
x1 � x � x2 such that Z x2

x1

un(x)um(x) dx = Ænm: (1)

We showed that the completeness of this functions implies that

1X
n=1

un(x)un(x
0) = Æ(x� x0): (2)

This relation allows us to use these functions to represent a Green's function for our system.
For the 1-dimensional Poisson equation, the Green's function satis�es

@2

@x2
G(x; x0) = �4�Æ(x� x0): (3)

Therefore, if
d2

dx2
un(x) = ��nun(x); (4)

where fun(x)g also satisfy the appropriate boundary conditions, then we can write the Greens
functions as

G(x; x0) = 4�
X
n

un(x)un(x
0)

�n
: (5)

For example, if un(x) =
q
2=a sin(n�x=a), then

G(x; x0) =
8�

a

X
n

sin(n�x=a) sin(n�x0=a)�
n�
a

�2 : (6)

These ideas can easily be extended to two and three dimensions. For example if fun(x)g,
fvn(x)g, and fwn(x)g denote the complete functions in the x, y, and z directions respectively,
then the three dimensional Green's function can be written:

G(x; x0; y; y0; z; z0) =
X
lmn

ul(x)ul(x
0)vm(y)vm(y

0)wn(z)wn(z
0)

�l + �m + n
; (7)

where

d2

dx2
ul(x) = ��lul(x);

d2

dy2
vm(x) = ��mvm(y); and

d2

dz2
wn(z) = �nwn(z): (8)

See Eq. 3.167 in Jackson for an example.



An alternative method of �nding Green's functions for second order ordinary di�erential
equations is based on a product of two independent solutions of the homogeneous equation,
u1(x) and u2(x), which satisfy the boundary conditions at x1 and x1, respectively:

G(x; x0) = Ku1(x<)u2(x>); where K �
4�

u1
du2
dx
� du1

dx
u2

; (9)

with x< meaning the smaller of x and x0 and x> meaning the larger of x and x0. For example,
we have previously discussed the example of the one dimensional Poisson equation with the
boundary condition �(0) = 0 and d�(a)

dx
= 0 to have the form:

G(x; x0) = �4�x<: (10)

For the two and three dimensional cases, we can use this technique in one of the dimensions
in order to reduce the number of summation terms. These ideas are discussed in Section
3.11 of Jackson. For the two dimensional case, for example, we can assume that the Green's
function can be written in the form:

G(x; x0; y; y0) =
X
n

un(x)un(x
0)gn(y; y

0): (11)

We require that G satisfy the equation:

r2G =
X
n

un(x)un(x
0)

"
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gn(y; y

0) = �4�Æ(x� x0)Æ(y � y0): (12)

This form will have the required behavior, if we choose:
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gn(y; y

0) = �4�Æ(y � y0): (13)

If vn1(y) and vn2(y) are solutions to the homogeneous equation

"
��n +
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dy2

#
vni(y) = 0; (14)

satisfying the appropriate boundary conditions, we can then construct the 2-dimensional
Green's function from

G(x; x0; y; y0) =
X
n

un(x)un(x
0)Knvn1(y<)vn2(y>); (15)

where the constant Kn is de�ned in a similar way to the one-dimensional case. For example,
a Green's function for a two-dimensional with 0 � x � a and 0 � y � b, with the potential
vanishing on each of the boundaries can be expanded:

G(x; x0; y; y0) = 8
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