Notes for Lecture \#1

1 Introduction

1. Textbook and course structure
2. Motivation
3. Chapters I and 1 and Appendix of Jackson
(a) Units - SI vs Gaussian
(b) Laplace and Poisson Equations
(c) Green's Theorm

2 Units - SI vs Gaussian

Coulomb's law has the form:

$$
\begin{equation*}
F=K_{C} \frac{q_{1} q_{2}}{r_{12}^{2}} \tag{1}
\end{equation*}
$$

Ampere's law has the form:

$$
\begin{equation*}
F=K_{A} \frac{i_{1} i_{2}}{r_{12}^{2}} d \mathbf{s}_{\mathbf{1}} \times d \mathbf{s}_{\mathbf{2}} \times \hat{\mathbf{r}}_{\mathbf{1 2}} \tag{2}
\end{equation*}
$$

where the current and charge are related by $i_{1}=d q_{1} / d t$ for all unit systems. The two constants K_{C} and K_{A} are related so that their ratio K_{C} / K_{A} has the units of $(\mathrm{m} / \mathrm{s})^{2}$ and it is experimentally known that in both the SI and CGS (Gaussian) unit systems, it the value $K_{C} / K_{A}=c^{2}$, where c is the speed of light.

The choices for these constants in the SI and Gaussian units are given below:

	CGS (Gaussian)	SI
K_{C}	1	$\frac{1}{4 \pi \epsilon_{0}}$
K_{A}	$\frac{1}{c^{2}}$	$\frac{\mu_{0}}{4 \pi}$

Here, $\frac{\mu_{0}}{4 \pi} \equiv 10^{-7} N / A^{2}$ and $\frac{1}{4 \pi \epsilon_{0}}=c^{2} \cdot 10^{-7} N / A^{2}=8.98755 \times 10^{9} N \cdot m^{2} / C^{2}$.

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so labeled and are used to define the derived units.

Variable	SI		Gaussian		SI/Gaussian
	Unit	Relation	Unit	Relation	
length	m	fundamental	$c m$	fundamental	100
mass	$k g$	fundamental	$g m$	fundamental	1000
time	s	fundamental	s	fundamental	1
force	N	$k g \cdot m^{2} / s$	dyne	$g m \cdot \mathrm{~cm}^{2} / \mathrm{s}$	10^{5}
current	A	fundamental	statampere	statcoulomb $/ s$	$\frac{1}{10 c}$
charge	C	$A \cdot s$	statcoulomb	$\sqrt{d y n e \cdot \mathrm{~cm}^{2}}$	$\frac{1}{10 c}$

One advantage of the Gaussian system is that all of the field vectors: $\mathbf{E}, \mathbf{D}, \mathbf{B}, \mathbf{H}, \mathbf{P}, \mathbf{M}$ have the same dimensions, and in vacuum, $\mathbf{B}=\mathbf{H}$ and $\mathbf{E}=\mathbf{D}$ and the dielectric and permittivity constants ϵ and μ are unitless.

CGS (Gaussian)	SI
$\nabla \cdot \mathbf{D}=4 \pi \rho$	$\nabla \cdot \mathbf{D}=\rho$
$\nabla \cdot \mathbf{B}=0$	$\nabla \cdot \mathbf{B}=0$
$\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$	$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
$\nabla \times \mathbf{H}=\frac{4 \pi}{c} \mathbf{J}+\frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$	$\nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}$
$\mathbf{F}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right.$	$\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B}$
$u=\frac{1}{8 \pi}(\mathbf{E} \cdot \mathbf{D}+\mathbf{B} \cdot \mathbf{H})$	$u=\frac{1}{2}(\mathbf{E} \cdot \mathbf{D}+\mathbf{B} \cdot \mathbf{H})$
$\mathbf{S}=\frac{c}{4 \pi}(\mathbf{E} \times \mathbf{H})$	$\mathbf{S}=(\mathbf{E} \times \mathbf{H})$

"Proof" of the identity (Eq. (1.31))

$$
\begin{equation*}
\nabla^{2}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right)=-4 \pi \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{3}
\end{equation*}
$$

Noting that

$$
\begin{align*}
& \int_{\text {small sphere }} d^{3} r \delta^{3}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) f(\mathbf{r})=f\left(\mathbf{r}^{\prime}\right), \tag{4}\\
& \text { about } \mathbf{r}^{\prime}
\end{align*}
$$

we see that we must show that

$$
\begin{equation*}
\int_{\substack{\text { small sphere } \\ \text { about } \mathbf{r}^{\prime}}} d^{3} r \nabla^{2}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) f(\mathbf{r})=-4 \pi f\left(\mathbf{r}^{\prime}\right) . \tag{5}
\end{equation*}
$$

We introduce a small radius a such that:

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\lim _{a \rightarrow 0} \frac{1}{\sqrt{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}+a^{2}}} \tag{6}
\end{equation*}
$$

For a fixed value of a,

$$
\begin{equation*}
\nabla^{2} \frac{1}{\sqrt{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}+a^{2}}}=\frac{-3 a^{2}}{\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}+a^{2}\right)^{5 / 2}} \tag{7}
\end{equation*}
$$

If the function $f(\mathbf{r})$ is continuous, we can make a Tayor expansion about the point $\mathbf{r}=\mathbf{r}^{\prime}$. Jackson's text shows that it is necessary to keep only the leading term. The integral over the small sphere about \mathbf{r}^{\prime} can be carried out analytically, by changing to a coordinate system centered at \mathbf{r}^{\prime};

$$
\begin{equation*}
\mathbf{u}=\mathbf{r}-\mathbf{r}^{\prime} \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{\text {small sphere }} d^{3} r \nabla^{2}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) f(\mathbf{r}) \approx f\left(\mathbf{r}^{\prime}\right) \int_{u<R} d^{3} u \frac{-3 a^{2}}{\left(u^{2}+a^{2}\right)^{5 / 2}} \tag{9}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\int_{u<R} d^{3} u \frac{-3 a^{2}}{\left(u^{2}+a^{2}\right)^{5 / 2}}=4 \pi \int_{0}^{R} d u \frac{-3 a^{2} u^{2}}{\left(u^{2}+a^{2}\right)^{5 / 2}}=4 \pi \frac{-R^{3}}{\left(R^{2}+a^{2}\right)^{3 / 2}} . \tag{10}
\end{equation*}
$$

If the infinitesimal value a is $a \ll R$, then $\left(R^{2}+a^{2}\right)^{3 / 2} \approx R^{3}$ and the right hand side of Eq. 10 is -4π. Therefore, Eq. 9 becomes,

$$
\begin{equation*}
\int_{\substack{\text { small sphere } \\ \text { about } \mathbf{r}^{\prime}}} d^{3} r \nabla^{2}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right) f(\mathbf{r}) \approx f\left(\mathbf{r}^{\prime}\right)(-4 \pi) \tag{11}
\end{equation*}
$$

which is consistent with Eq. 5.

