February 22, 2001

Notes for Lecture #16

Vector potentials in magnetostatics

The vector potential corresponding to a current density distribution J(r) is given by
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This expression is useful if the current density J(r) is confined within a finite region of
space. Consider the following example corresponding to a rotating charged sphere of radius
a, with pg denoting the uniform charge density within the sphere and w denoting the angular
rotation of the sphere:

n | pow x1' forr’ <a
J(r) = { 0 otherwise (2)

In order to evaluate the vector potential (1) for this problem, we can make use of the

expansion:
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we see that the angular integral result takes the simple form:
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Therefore the vector potential for this system is:
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which can be evaluated as:
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As another example, consider the current associated with an electron in the |nlm = 211)
state of a H atom:

—eh /
_ —r'/a 5
) = Gdmmas axr, (8)



where a here denotes the Bohr radius. Using arguments similar to those above, we find that

A(I‘) _ _ehﬂoz X I'/ dr' r /3 e '/a T<' (9)

192mma®

This expression can be integrated to give:
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