Notes for Lecture #16

Vector potentials in magnetostatics

The vector potential corresponding to a current density distribution $\mathbf{J}(\mathbf{r})$ is given by

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}.$$
 (1)

This expression is useful if the current density $\mathbf{J}(\mathbf{r})$ is confined within a finite region of space. Consider the following example corresponding to a rotating charged sphere of radius a, with ρ_0 denoting the uniform charge density within the sphere and ω denoting the angular rotation of the sphere:

$$\mathbf{J}(\mathbf{r}') = \begin{cases} \rho_0 \omega \times \mathbf{r}' & \text{for } r' \le a \\ 0 & \text{otherwise} \end{cases}$$
(2)

In order to evaluate the vector potential (1) for this problem, we can make use of the expansion:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{lm} \frac{4\pi}{2l+1} \frac{r_{<}^l}{r_{>}^{l+1}} Y_{lm}(\hat{\mathbf{r}}) Y_{lm}^*(\hat{\mathbf{r}'}).$$
(3)

Noting that

$$\mathbf{r}' = r'\sqrt{\frac{4\pi}{3}} \left(Y_{1-1}(\hat{\mathbf{r}}')\frac{\hat{\mathbf{x}} + \hat{\mathbf{y}}}{\sqrt{2}} + Y_{11}(\hat{\mathbf{r}}')\frac{\hat{\mathbf{x}} - \hat{\mathbf{y}}}{\sqrt{2}} + Y_{10}(\hat{\mathbf{r}}')\hat{\mathbf{z}} \right),\tag{4}$$

we see that the angular integral result takes the simple form:

$$\int d\Omega' \sum_{m} Y_{lm}(\hat{\mathbf{r}}) Y_{lm}^*(\hat{\mathbf{r}}') \, \mathbf{r}' = \frac{r'}{r} \mathbf{r} \, \delta_{l1}.$$
(5)

Therefore the vector potential for this system is:

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 \rho_0 \omega \times \mathbf{r}}{3r} \int_0^a dr' \ r'^3 \frac{r_<}{r_>^2},\tag{6}$$

which can be evaluated as:

$$\mathbf{A}(\mathbf{r}) = \begin{cases} \frac{\mu_0 \rho_0 \omega \times \mathbf{r}}{3} \left(\frac{a^2}{2} - \frac{3r^2}{10}\right) & \text{for } r \le a \\ \\ \frac{\mu_0 \rho_0 \omega \times \mathbf{r}}{3r^3} \frac{a^5}{5} & \text{for } r \ge a \end{cases}$$
(7)

As another example, consider the current associated with an electron in the $|nlm = 211\rangle$ state of a H atom:

$$\mathbf{J}(\mathbf{r}') = \frac{-e\hbar}{64m\pi a^5} \mathrm{e}^{-r'/a} \,\,\hat{\mathbf{z}} \times \mathbf{r}',\tag{8}$$

where a here denotes the Bohr radius. Using arguments similar to those above, we find that

$$\mathbf{A}(\mathbf{r}) = \frac{-e\hbar\mu_0 \hat{\mathbf{z}} \times \mathbf{r}}{192m\pi a^5 r} \int_0^\infty dr' \ r'^3 \ \mathrm{e}^{-r'/a} \ \frac{r_<}{r_>^2}.$$
 (9)

This expression can be integrated to give:

$$\mathbf{A}(\mathbf{r}) = \frac{-e\hbar\mu_0 \hat{\mathbf{z}} \times \mathbf{r}}{8m\pi r^3} \left[1 - e^{-r/a} \left(1 + \frac{r}{a} + \frac{r^2}{2a^2} + \frac{r^3}{8a^3} \right) \right].$$
 (10)