Feb 22, 2001

Notes for Lecture Notes for Lecture #17

Derivation of the hyperfine interaction

Magnetic dipole field

These notes are very similar to the notes for Lecture #13 on the electric dipole field.

The magnetic dipole moment is defined by

m = 1
2
ó
õ
d3r¢ r¢ ×J(r¢),
(1)
with the corresponding potential
A(r) = m0
4p
m × ^
r
 

r2
,
(2)
and magnetostatic field
B(r) = m0
4p
ì
ï
í
ï
î
3 ^
r
 
(m · ^
r
 
) - m

r3
+ 8p
3
m d3(r) ü
ï
ý
ï
þ
.
(3)

The first terms come form evaluating Ñ×A in Eq. 2. The last term of the field expression follows from the following derivation. We note that Eq. (3) is poorly defined as r® 0, and consider the value of a small integral of B(r) about zero. (For this purpose, we are supposing that the dipole m is located at r = 0.) In this case we will approximate

B(r » 0) » æ
è
ó
õ


sphere 
B(r) d3r ö
ø
d3(r).
(4)

First we note that

ó
õ


r £ R 
B(r) d3r = R2 ó
õ


r = R 
^
r
 
×A(r)   dW.
(5)

This result follows from the divergence theorm:

ó
õ


vol 
Ñ·V d3r = ó
õ


surface 
V · dA.
(6)
In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of Ñ×A since Ñ×A = [^(x)] ( [^(x)] ·(Ñ× A) ) + [^(y)] ( [^(y)] ·(Ñ×A) ) + [^(z)] ( [^(z)] ·(Ñ×A) ). Note that [^(x)] ·(Ñ×A) = -Ñ·([^(x)] ×A) and that we can use the Divergence theorem with V º [^(x)] ×A(r) for the x- component for example:
ó
õ


vol 
Ñ·( ^
x
 
×A) d3r = ó
õ


surface 
( ^
x
 
×A) · ^
r
 
dA = ó
õ


surface 
(A × ^
r
 
) · ^
x
 
dA.
(7)
Therefore,
ó
õ


r £ R 
(Ñ×A) d3r = - ó
õ


r = R 
(A × ^
r
 
) ·( ^
x
 
^
x
 
+ ^
y
 
^
y
 
+ ^
z
 
^
z
 
) dA = R2 ó
õ


r = R 
( ^
r
 
×A) dW
(8)
which is identical to Eq. (5). Now, expressing the vector potential in terms of the current density:
A(r) = m0
4 p
ó
õ
d3r J(r¢)
|r - r¢|
,
(9)
we can use the identity,
ó
õ
dW
^
r
 

|r - r¢|
= 4 p
3
r <
r > 2
   ^
r¢
 
.
(10)

Therefore,

R2 ó
õ


r = R 
( ^
r
 
×A) dW = 4 pR2
3
ó
õ
d3r¢    r <
r > 2
   ^
r¢
 
×J(r¢).
(11)
If the sphere R contains the entire current distribution, then r > = R and r < = r¢ so that (11) becomes
R2 ó
õ


r = R 
( ^
r
 
×A) dW = 4 p
3
ó
õ
d3r¢   r¢ ×J(r¢) º 8 p
3
m.
(12)

Magnetic field due to electrons in the vicinity of a nucleus

According to the Biot-Savart law (or the curl of Eq. 9), the magnetic field produced by a current density J(r¢) is given by:

B(r) = m0
4 p
ó
õ
d3r¢ J(r¢) ×(r - r¢)
|r - r¢|3
(13)
In this case, we assume that the current density is due to an electron in a bound atomic state with quantum numbers |n l ml ñ, as described by a wavefunction ynlml(r), where the azimuthal quantum number ml is associated with a factor of the form ei ml f. For such a wavefunction the quantum mechanical current density operator can be evaluated:
J(r¢) = -e (h/2p)
2mi
(ynlml*Ѣ ynlml-ynlml Ѣynlml* ).
(14)
Since the only complex part of this wavefunction is associated with the azimuthal quantum number, this can be written:
J(r¢) = -e (h/2p)
2mi r¢sinq¢
æ
ç
è
ynlml*
f¢
ynlml-ynlml
f¢
ynlml* ö
÷
ø
^
f¢
 
=
-e (h/2p) ml ^
f¢
 

m r¢ sinq¢
|ynlml|2.
(15)

We need to use this current density in the Biot-Savart law and evaluate the field at the nucleus (r = 0). The vector cross product in the numerator can be evaluated in spherical polar coordinates as:

^
f¢
 
×(-r¢) = r¢ æ
è
- ^
x
 
cosq¢cosf¢ - ^
y
 
cosq¢sinf¢ + ^
z
 
sinq¢ ö
ø
(16)
Thus the magnetic field evaluated at the nucleus is given by the integral:
B(0) = - m0 e (h/2p) ml
4 pm
ó
õ
d3r¢|ynlml|2
r¢ æ
è
- ^
x
 
cosq¢cosf¢ - ^
y
 
cosq¢sinf¢ + ^
z
 
sinq¢ ö
ø

r¢ sinq¢  r¢3
.
(17)
In evaluating the integration over the azimuthal variable f¢, the [^(x)] and [^(y)] components vanish leaving the simple result:
B(0) = -
m0 e (h/2p) ml ^
z
 

4 pm
ó
õ
d3r¢|ynlml|2 1
r¢3
º - m0 e
4 pm
Lz ^
z
 

á
1
r¢3

ñ
.
(18)


File translated from TEX by TTH, version 2.20.
On 22 Feb 2001, 10:20.