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Notes for Lecture #17

Derivation of the hyperfine interaction

Magnetic dipole field

These notes are very similar to the notes for Lecture #13 on the electric dipole field.

The magnetic dipole moment is defined by

m =
1

2

∫
d3r′r′ × J(r′), (1)

with the corresponding potential

A(r) =
µ0

4π

m× r̂

r2
, (2)

and magnetostatic field

B(r) =
µ0

4π

{
3r̂(m · r̂)−m

r3
+

8π

3
mδ3(r)

}
. (3)

The first terms come form evaluating ∇×A in Eq. 2. The last term of the field expression
follows from the following derivation. We note that Eq. (3) is poorly defined as r → 0, and
consider the value of a small integral of B(r) about zero. (For this purpose, we are supposing
that the dipole m is located at r = 0.) In this case we will approximate

B(r ≈ 0) ≈
(∫

sphere
B(r)d3r

)
δ3(r). (4)

First we note that ∫
r≤R

B(r)d3r = R2
∫

r=R
r̂×A(r) dΩ. (5)

This result follows from the divergence theorm:∫
vol
∇ · Vd3r =

∫
surface

V·dA. (6)

In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of ∇×A
since ∇×A = x̂ (x̂ · (∇×A)) + ŷ (ŷ · (∇×A)) + ẑ (ẑ · (∇×A)). Note that x̂ · (∇×A) =
−∇ · (x̂×A) and that we can use the Divergence theorem with V ≡ x̂×A(r) for the x−
component for example:∫

vol
∇ · (x̂×A)d3r =

∫
surface

(x̂×A) · r̂dA =
∫
surface

(A× r̂) · x̂dA. (7)



Therefore,∫
r≤R

(∇×A)d3r = −
∫

r=R
(A× r̂) · (x̂x̂ + ŷŷ + ẑẑ)dA = R2

∫
r=R

(r̂×A)dΩ (8)

which is identical to Eq. (5). Now, expressing the vector potential in terms of the current
density:

A(r) =
µ0

4π

∫
d3r

J(r′)

|r− r′|
, (9)

we can use the identity, ∫
dΩ

r̂

|r− r′|
=

4π

3

r<

r2
>

r̂′. (10)

Therefore,

R2
∫

r=R
(r̂×A)dΩ =

4πR2

3

∫
d3r′

r<

r2
>

r̂′ × J(r′). (11)

If the sphere R contains the entire current distribution, then r> = R and r< = r′ so that
(11) becomes

R2
∫

r=R
(r̂×A)dΩ =

4π

3

∫
d3r′ r′ × J(r′) ≡ 8π

3
m. (12)

Magnetic field due to electrons in the vicinity of a nucleus

According to the Biot-Savart law (or the curl of Eq. 9), the magnetic field produced by a
current density J(r′) is given by:

B(r) =
µ0

4π

∫
d3r′

J(r′)× (r− r′)

|r− r′|3
(13)

In this case, we assume that the current density is due to an electron in a bound atomic state
with quantum numbers |nlml〉, as described by a wavefunction ψnlml

(r), where the azimuthal
quantum number ml is associated with a factor of the form eimlφ. For such a wavefunction
the quantum mechanical current density operator can be evaluated:

J(r′) =
−eh̄
2mi

(
ψ∗

nlml
∇′ψnlml

− ψnlml
∇′ψ∗

nlml

)
. (14)

Since the only complex part of this wavefunction is associated with the azimuthal quantum
number, this can be written:

J(r′) =
−eh̄

2mir′ sin θ′

(
ψ∗

nlml

∂

∂φ′
ψnlml

− ψnlml

∂

∂φ′
ψ∗

nlml

)
φ̂′ =

−eh̄mlφ̂′

mr′ sin θ′
|ψnlml

|2 . (15)

We need to use this current density in the Biot-Savart law and evaluate the field at the
nucleus (r = 0). The vector cross product in the numerator can be evaluated in spherical
polar coordinates as:

φ̂′ × (−r′) = r′ (−x̂ cos θ′ cosφ′ − ŷ cos θ′ sinφ′ + ẑ sin θ′) (16)



Thus the magnetic field evaluated at the nucleus is given by the integral:

B(0) = −µ0eh̄ml

4πm

∫
d3r′ |ψnlml

|2 r
′ (−x̂ cos θ′ cosφ′ − ŷ cos θ′ sinφ′ + ẑ sin θ′)

r′ sin θ′ r′3
. (17)

In evaluating the integration over the azimuthal variable φ′, the x̂ and ŷ components vanish
leaving the simple result:

B(0) = −µ0eh̄mlẑ

4πm

∫
d3r′ |ψnlml

|2 1

r′3
≡ − µ0e

4πm
Lzẑ

〈
1

r′3

〉
. (18)


