February 22, 2001

Notes for Lecture #17

Derivation of the hyperfine interaction
Magnetic dipole field

These notes are very similar to the notes for Lecture #13 on the electric dipole field.

The magnetic dipole moment is defined by
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The first terms come form evaluating V x A in Eq. 2. The last term of the field expression
follows from the following derivation. We note that Eq. (3) is poorly defined as r — 0, and
consider the value of a small integral of B(r) about zero. (For this purpose, we are supposing
that the dipole m is located at r = 0.) In this case we will approximate
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First we note that
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This result follows from the divergence theorm:
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In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of V x A
since VXA =%X(X-(VXA)+3(F - (VxA)+2z(z-(VxA)). Note that X- (V x A) =
—V - (X x A) and that we can use the Divergence theorem with V = % x A(r) for the x—
component for example:
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Therefore,
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which is identical to Eq. (5). Now, expressing the vector potential in terms of the current
density:
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Therefore,
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If the sphere R contains the entire current distribution, then r~ = R and r- = r’ so that
(11) becomes
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Magnetic field due to electrons in the vicinity of a nucleus

According to the Biot-Savart law (or the curl of Eq. 9), the magnetic field produced by a
current density J(r') is given by:
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In this case, we assume that the current density is due to an electron in a bound atomic state
with quantum numbers |nlm;), as described by a wavefunction ©,,,,, (r), where the azimuthal
quantum number m; is associated with a factor of the form e”®. For such a wavefunction
the quantum mechanical current density operator can be evaluated:
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Since the only complex part of this wavefunction is associated with the azimuthal quantum
number, this can be written:
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We need to use this current density in the Biot-Savart law and evaluate the field at the
nucleus (r = 0). The vector cross product in the numerator can be evaluated in spherical
polar coordinates as:
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Thus the magnetic field evaluated at the nucleus is given by the integral:
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In evaluating the integration over the azimuthal variable ¢’, the X and ¥ components vanish
leaving the simple result:
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