Notes for Lecture \#17

Derivation of the hyperfine interaction

Magnetic dipole field

These notes are very similar to the notes for Lecture \#13 on the electric dipole field.
The magnetic dipole moment is defined by

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{1}
\end{equation*}
$$

with the corresponding potential

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \tag{2}
\end{equation*}
$$

and magnetostatic field

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi}\left\{\frac{3 \hat{\mathbf{r}}(\mathbf{m} \cdot \hat{\mathbf{r}})-\mathbf{m}}{r^{3}}+\frac{8 \pi}{3} \mathbf{m} \delta^{3}(\mathbf{r})\right\} . \tag{3}
\end{equation*}
$$

The first terms come form evaluating $\nabla \times \mathbf{A}$ in Eq. 2. The last term of the field expression follows from the following derivation. We note that Eq. (3) is poorly defined as $r \rightarrow 0$, and consider the value of a small integral of $\mathbf{B}(\mathbf{r})$ about zero. (For this purpose, we are supposing that the dipole \mathbf{m} is located at $\mathbf{r}=\mathbf{0}$.) In this case we will approximate

$$
\begin{equation*}
\mathbf{B}(\mathbf{r} \approx \mathbf{0}) \approx\left(\int_{\text {sphere }} \mathbf{B}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}\right) \delta^{3}(\mathbf{r}) \tag{4}
\end{equation*}
$$

First we note that

$$
\begin{equation*}
\int_{r \leq R} \mathbf{B}(\mathbf{r}) d^{3} r=R^{2} \int_{r=R} \hat{\mathbf{r}} \times \mathbf{A}(\mathbf{r}) d \Omega . \tag{5}
\end{equation*}
$$

This result follows from the divergence theorm:

$$
\begin{equation*}
\int_{\text {vol }} \nabla \cdot \mathcal{V} \mathbf{d}^{3} \mathbf{r}=\int_{\text {surface }} \mathcal{V} \cdot \mathbf{d} \mathbf{A} . \tag{6}
\end{equation*}
$$

In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of $\nabla \times \mathbf{A}$ since $\nabla \times \mathbf{A}=\hat{\mathbf{x}}(\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{y}}(\hat{\mathbf{y}} \cdot(\nabla \times \mathbf{A}))+\hat{\mathbf{z}}(\hat{\mathbf{z}} \cdot(\nabla \times \mathbf{A}))$. Note that $\hat{\mathbf{x}} \cdot(\nabla \times \mathbf{A})=$ $-\nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A})$ and that we can use the Divergence theorem with $\mathcal{V} \equiv \hat{\mathbf{x}} \times \mathbf{A}(\mathbf{r})$ for the $x-$ component for example:

$$
\begin{equation*}
\int_{\mathrm{vol}} \nabla \cdot(\hat{\mathbf{x}} \times \mathbf{A}) d^{3} r=\int_{\text {surface }}(\hat{\mathbf{x}} \times \mathbf{A}) \cdot \hat{\mathbf{r}} d A=\int_{\text {surface }}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot \hat{\mathbf{x}} d A . \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{r \leq R}(\nabla \times \mathbf{A}) d^{3} r=-\int_{r=R}(\mathbf{A} \times \hat{\mathbf{r}}) \cdot(\hat{\mathbf{x}} \hat{\mathbf{x}}+\hat{\mathbf{y}} \hat{\mathbf{y}}+\hat{\mathbf{z}} \hat{\mathbf{z}}) d A=R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega \tag{8}
\end{equation*}
$$

which is identical to Eq. (5). Now, expressing the vector potential in terms of the current density:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, \tag{9}
\end{equation*}
$$

we can use the identity,

$$
\begin{equation*}
\int d \Omega \frac{\hat{\mathbf{r}}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{4 \pi}{3} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}}^{\prime} . \tag{10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi R^{2}}{3} \int d^{3} r^{\prime} \frac{r_{<}}{r_{>}^{2}} \hat{\mathbf{r}^{\prime}} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \tag{11}
\end{equation*}
$$

If the sphere R contains the entire current distribution, then $r_{>}=R$ and $r_{<}=r^{\prime}$ so that (11) becomes

$$
\begin{equation*}
R^{2} \int_{r=R}(\hat{\mathbf{r}} \times \mathbf{A}) d \Omega=\frac{4 \pi}{3} \int d^{3} r^{\prime} \mathbf{r}^{\prime} \times \mathbf{J}\left(\mathbf{r}^{\prime}\right) \equiv \frac{8 \pi}{3} \mathbf{m} \tag{12}
\end{equation*}
$$

Magnetic field due to electrons in the vicinity of a nucleus

According to the Biot-Savart law (or the curl of Eq. 9), the magnetic field produced by a current density $\mathbf{J}\left(\mathbf{r}^{\prime}\right)$ is given by:

$$
\begin{equation*}
\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} \tag{13}
\end{equation*}
$$

In this case, we assume that the current density is due to an electron in a bound atomic state with quantum numbers $\left|n l m_{l}\right\rangle$, as described by a wavefunction $\psi_{n l m_{l}}(\mathbf{r})$, where the azimuthal quantum number m_{l} is associated with a factor of the form $\mathrm{e}^{i m_{l} \phi}$. For such a wavefunction the quantum mechanical current density operator can be evaluated:

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}\right)=\frac{-e \hbar}{2 m i}\left(\psi_{n l m_{l}}^{*} \nabla^{\prime} \psi_{n l m_{l}}-\psi_{n l m_{l}} \nabla^{\prime} \psi_{n l m_{l}}^{*}\right) . \tag{14}
\end{equation*}
$$

Since the only complex part of this wavefunction is associated with the azimuthal quantum number, this can be written:

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}\right)=\frac{-e \hbar}{2 m i r^{\prime} \sin \theta^{\prime}}\left(\psi_{n l m_{l}}^{*} \frac{\partial}{\partial \phi^{\prime}} \psi_{n l m_{l}}-\psi_{n l m_{l}} \frac{\partial}{\partial \phi^{\prime}} \psi_{n l m_{l}}^{*}\right) \hat{\phi}^{\prime}=\frac{-e \hbar m_{l} \hat{\phi}^{\prime}}{m r^{\prime} \sin \theta^{\prime}}\left|\psi_{n l m_{l}}\right|^{2} . \tag{15}
\end{equation*}
$$

We need to use this current density in the Biot-Savart law and evaluate the field at the nucleus $(\mathbf{r}=\mathbf{0})$. The vector cross product in the numerator can be evaluated in spherical polar coordinates as:

$$
\begin{equation*}
\hat{\phi}^{\prime} \times\left(-\mathbf{r}^{\prime}\right)=r^{\prime}\left(-\hat{\mathbf{x}} \cos \theta^{\prime} \cos \phi^{\prime}-\hat{\mathbf{y}} \cos \theta^{\prime} \sin \phi^{\prime}+\hat{\mathbf{z}} \sin \theta^{\prime}\right) \tag{16}
\end{equation*}
$$

Thus the magnetic field evaluated at the nucleus is given by the integral:

$$
\begin{equation*}
\mathbf{B}(\mathbf{0})=-\frac{\mu_{0} e \hbar m_{l}}{4 \pi m} \int d^{3} r^{\prime}\left|\psi_{n l m_{l}}\right|^{2} \frac{r^{\prime}\left(-\hat{\mathbf{x}} \cos \theta^{\prime} \cos \phi^{\prime}-\hat{\mathbf{y}} \cos \theta^{\prime} \sin \phi^{\prime}+\hat{\mathbf{z}} \sin \theta^{\prime}\right)}{r^{\prime} \sin \theta^{\prime} r^{\prime 3}} . \tag{17}
\end{equation*}
$$

In evaluating the integration over the azimuthal variable ϕ^{\prime}, the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ components vanish leaving the simple result:

$$
\begin{equation*}
\mathbf{B}(\mathbf{0})=-\frac{\mu_{0} e \hbar m_{l} \hat{\mathbf{z}}}{4 \pi m} \int d^{3} r^{\prime}\left|\psi_{n l m_{l}}\right|^{2} \frac{1}{r^{\prime 3}} \equiv-\frac{\mu_{0} e}{4 \pi m} L_{z} \hat{\mathbf{z}}\left\langle\frac{1}{r^{\prime 3}}\right\rangle . \tag{18}
\end{equation*}
$$

