January 22, 2001

Notes for Lecture #3

The “mean value theorem” for solutions to the Laplace equation

Consider an electrostatic field ®(r) in a charge-free region so that it satisfies the Laplace
equation:
V20(r) = 0. (1)

The “mean value theorem” value theorem states that the value of ®(r) at the arbitrary
(charge-free) point r is equal to the average of ®(r’) over the surface of any sphere centered
on the point r (see Jackson problem #1.10). One way to prove this theorem is the following.
Consider a point ' = r + u, where u will describe a sphere of radius R about the fixed point
r. We can make a Taylor series expansion of the electrostatic potential ®(r’) about the fixed
point r:
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According to the premise of the theorem, we want to integrate both sides of the equation 2
over a sphere of radius R in the variable u:
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Since V2®(r) = 0, the only non-zero term of the average it thus the first term:
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Since this result is independent of the radius R, we see that we have proven the theorem.



