February 7, 2001

Notes for Lecture #9

Finite element method

The finite element approach is based on an expansion of the unknown electrostatic potential
in terms of known grid-based functions of fixed shape. In two dimensions, using the indices
{i,j} to reference the grid, we can denote the shape functions as {¢;;(x,y)}. The finite
element expansion of the potential in two dimensions can take the form:

dreg®(r,y) = Z Vijbii (@, y), (1)
ij

where 1);; represents the amplitude associated with the shape function ¢;;(z,y). The ampli-
tude values can be determined for a given solution of the Poisson equation:

—V? (dmeo®(x,y)) = 4mp(z, y), (2)
by solving a linear algebra problem of the form
> M5 = G, (3)
ij
where

My 5 = /dlf/dyvébkl(%y) : V¢z‘j($7y) and Gy = /dﬂﬁ/dyﬁbkl(%y) drp(z,y).  (4)

In obtaining this result, we have assumed that the boundary values vanish. In order for this
result to be useful, we need to be able evaluate the integrals for My, ;; and for Gy;. In the
latter case, we need to know the form of the charge density. The form of My, ;; only depends
upon the form of the shape functions. If we take these functions to be:

bij(z,y) = Xi(x)V;(y), (5)
where .
Xi(x)z{(l_hl) forxi—.hgxgx,-—i-h7 (6)
0 otherwise

and Y;(y) has a similar expression in the variable y. Then

(7)

My = / 0 / " [d?i;x(x) d;f;;x) V) Vs(y) + Xe(o) Xi@)d);l;y) d)gy(y)

There are four types of non-trivial contributions to these values:
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vith (dX(z)\ 1 1 2
do= [ du=< 10
/a3¢—h<dx>xh—1uh’ (10)
" b (d() X (2
zit+ d.)(l X dXi—i—l X 1 /! —1
d = —— / du=—-. 11
/xi—h<d$ dz)x hou h (11)
These basic ingredients lead to the following distinct values for the matrix:
% fork=diand [l =3
My = —% for k —i=+1and/orl —j =41 . (12)
0  otherwise

For problems in which the boundary values are 0, Eq. 3 then can be used to find all of the
interior amplitudes ;.

In order to use this technique to solve the boundary value problem discussed in Lecture
Notes #5, we have to make one modification. The boundary value of ®(z,a) = V} is not
consistent with the derivation of Eq. (4), however, since we are only interested in the region
0 <y < a, we can extend our numerical analysis to the region 0 < y < a + h and require
®(z,a + h) = 0 in addition to ®(z,a) = V. Using the same indexing as in Lecture Notes
#5, this means that ¢¥; = ¢y = 13 = V. The finite element approach for this problem thus
can be put into the matrix form for analysis by Maple:

8/3 —-1/3 —-1/3 —-1/3 0 0 Vs 1
-2/3 8/3 -2/3 —-1/3 0 0 Vg 1
-1/3 -1/3 8/3 -1/3 —-1/3 —-1/3 Vg _ 0 Ve, (13)
-2/3 —-1/3 -2/3 8/3 -—-2/3 —1/3 Py 0
0 o -1/3 -1/3 8/3 -1/3 Y11 0
0 0o -2/3 -1/3 =-2/3 8/3 Y12 0
The solution to these equations and the exact results are found to be:
Vs 0.5070276498 4320283318
(I .Hh847926267 .5405292183
s 0.1928571429 1820283318
= Vo; (exact) = Vo. (14)
g 0.2785714286 0.25
(I 0.07154377880 06797166807
Y12 0.1009216590 09541411792

We see that the results are similar to those obtained using the finite difference approach.



