Notes for Lecture \#9

Finite element method

The finite element approach is based on an expansion of the unknown electrostatic potential in terms of known grid-based functions of fixed shape. In two dimensions, using the indices $\{i, j\}$ to reference the grid, we can denote the shape functions as $\left\{\phi_{i j}(x, y)\right\}$. The finite element expansion of the potential in two dimensions can take the form:

$$
\begin{equation*}
4 \pi \varepsilon_{0} \Phi(x, y)=\sum_{i j} \psi_{i j} \phi_{i j}(x, y) \tag{1}
\end{equation*}
$$

where $\psi_{i j}$ represents the amplitude associated with the shape function $\phi_{i j}(x, y)$. The amplitude values can be determined for a given solution of the Poisson equation:

$$
\begin{equation*}
-\nabla^{2}\left(4 \pi \varepsilon_{0} \Phi(x, y)\right)=4 \pi \rho(x, y) \tag{2}
\end{equation*}
$$

by solving a linear algebra problem of the form

$$
\begin{equation*}
\sum_{i j} M_{k l, i j} \psi_{i j}=G_{k l}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k l, i j} \equiv \int d x \int d y \nabla \phi_{k l}(x, y) \cdot \nabla \phi_{i j}(x, y) \quad \text { and } \quad G_{k l} \equiv \int d x \int d y \phi_{k l}(x, y) 4 \pi \rho(x, y) \tag{4}
\end{equation*}
$$

In obtaining this result, we have assumed that the boundary values vanish. In order for this result to be useful, we need to be able evaluate the integrals for $M_{k l, i j}$ and for $G_{k l}$. In the latter case, we need to know the form of the charge density. The form of $M_{k l, i j}$ only depends upon the form of the shape functions. If we take these functions to be:

$$
\begin{equation*}
\phi_{i j}(x, y) \equiv \mathcal{X}_{i}(x) \mathcal{Y}_{j}(y) \tag{5}
\end{equation*}
$$

where

$$
\mathcal{X}_{i}(x) \equiv \begin{cases}\left(1-\frac{\left|x-x_{i}\right|}{h}\right) & \text { for } x_{i}-h \leq x \leq x_{i}+h \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

and $\mathcal{Y}_{j}(y)$ has a similar expression in the variable y. Then

$$
\begin{equation*}
M_{k l, i j} \equiv \int d x \int d y\left[\frac{d \mathcal{X}_{k}(x)}{d x} \frac{d \mathcal{X}_{i}(x)}{d x} \mathcal{Y}_{l}(y) \mathcal{Y}_{j}(y)+\mathcal{X}_{k}(x) \mathcal{X}_{i}(x) \frac{d \mathcal{Y}_{l}(y)}{d y} \frac{d \mathcal{Y}_{j}(y)}{d y}\right] \tag{7}
\end{equation*}
$$

There are four types of non-trivial contributions to these values:

$$
\begin{equation*}
\int_{x_{i}-h}^{x_{i}+h}\left(\mathcal{X}_{i}(x)\right)^{2} d x=h \int_{-1}^{1}(1-|u|)^{2} d u=\frac{2 h}{3}, \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
\int_{x_{i}-h}^{x_{i}+h}\left(\mathcal{X}_{i}(x) \mathcal{X}_{i+1}(x)\right) d x=h \int_{0}^{1}(1-u) u d u=\frac{h}{6} \tag{9}\\
\int_{x_{i}-h}^{x_{i}+h}\left(\frac{d \mathcal{X}_{i}(x)}{d x}\right)^{2} d x=\frac{1}{h} \int_{-1}^{1} d u=\frac{2}{h} \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{x_{i}-h}^{x_{i}+h}\left(\frac{d \mathcal{X}_{i}(x)}{d x} \frac{d \mathcal{X}_{i+1}(x)}{d x}\right) d x=-\frac{1}{h} \int_{0}^{1} d u=\frac{-1}{h} . \tag{11}
\end{equation*}
$$

These basic ingredients lead to the following distinct values for the matrix:

$$
M_{k l, i j}= \begin{cases}\frac{8}{3} & \text { for } k=i \text { and } l=j \tag{12}\\ -\frac{1}{3} & \text { for } k-i= \pm 1 \text { and/or } l-j= \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

For problems in which the boundary values are 0, Eq. 3 then can be used to find all of the interior amplitudes $\psi_{i j}$.

In order to use this technique to solve the boundary value problem discussed in Lecture Notes $\# 5$, we have to make one modification. The boundary value of $\Phi(x, a)=V_{0}$ is not consistent with the derivation of Eq. (4), however, since we are only interested in the region $0 \leq y \leq a$, we can extend our numerical analysis to the region $0 \leq y \leq a+h$ and require $\Phi(x, a+h)=0$ in addition to $\Phi(x, a)=V_{0}$. Using the same indexing as in Lecture Notes $\# 5$, this means that $\psi_{1}=\psi_{2}=\psi_{3}=V_{0}$. The finite element approach for this problem thus can be put into the matrix form for analysis by Maple:

$$
\left(\begin{array}{cccccc}
8 / 3 & -1 / 3 & -1 / 3 & -1 / 3 & 0 & 0 \tag{13}\\
-2 / 3 & 8 / 3 & -2 / 3 & -1 / 3 & 0 & 0 \\
-1 / 3 & -1 / 3 & 8 / 3 & -1 / 3 & -1 / 3 & -1 / 3 \\
-2 / 3 & -1 / 3 & -2 / 3 & 8 / 3 & -2 / 3 & -1 / 3 \\
0 & 0 & -1 / 3 & -1 / 3 & 8 / 3 & -1 / 3 \\
0 & 0 & -2 / 3 & -1 / 3 & -2 / 3 & 8 / 3
\end{array}\right)\left(\begin{array}{l}
\psi_{5} \\
\psi_{6} \\
\psi_{8} \\
\psi_{9} \\
\psi_{11} \\
\psi_{12}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The solution to these equations and the exact results are found to be:

$$
\left(\begin{array}{c}
\psi_{5} \tag{14}\\
\psi_{6} \\
\psi_{8} \\
\psi_{9} \\
\psi_{11} \\
\psi_{12}
\end{array}\right)=\left(\begin{array}{c}
0.5070276498 \\
.5847926267 \\
0.1928571429 \\
0.2785714286 \\
0.07154377880 \\
0.1009216590
\end{array}\right) V_{0} ; \quad(\text { exact })=\left(\begin{array}{c}
.4320283318 \\
.5405292183 \\
.1820283318 \\
0.25 \\
.06797166807 \\
.09541411792
\end{array}\right) V_{0}
$$

We see that the results are similar to those obtained using the finite difference approach.

