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Summary of perturbation theory equations

Time independent perturbation expansion

Suppose we have a reference Hamiltonian Hy for which we know all of the eigenvalues and

eigenfunctions:
Ho®° = EODL. (1)

Now we want to approximate the eigenvalues F,, and eigenfunctions ®,, of total Hamiltonian
H = Ho + H1, where the second term is small compared to the reference Hamiltonian term.
If the n'® zero-order eigenstate (E°) is not degenerate, then we can make the following
expansion. We will use the shorthand notation (®|H;|®% ) = Vi-
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If, on the other hand, the zero-order eigenstate (E?) is degenerate with one or more other
eigenstates, another method must be used. Suppose there are N such degenerate states which
we will label {(Pgi}, where 7 = 1,2,...N. We suppose that we can find N new zero-order
states {®%*} from linear combinations of the original states, by diagonalizing the following
N x N matrix:
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The energy eigenvalues { E*} correspond to corrections up to first order in the perturbation
for this system. Each eigenvalue E* corresponds to a linear combination of the zero order
eigenfunctions in terms of the coefficients {Cy }:
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Time dependent perturbation expansion

Now suppose that the perturbation depends on time. We will focus on the case in which
there is a harmonic time dependence which is “turned on” at time ¢ = 0:

Hi(t) = V(r) (e + ™) O(t), (6)

where ©(t) denotes the Heaviside step function. If the system is initially (¢ < 0) in the zero
order state ®°, the effects of the perturbation to first order in V' is given by
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In this expression, wy,, = M For large times ¢, it can be shown that the squared
modulus of the exitation coefficient c{})(¢) determines the transition rate:
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