Notes for Lecture #15 ## Vector potentials in magnetostatics The vector potential corresponding to a current density distribution $\mathbf{J}(\mathbf{r})$ is given by $$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}.$$ (1) This expression is useful if the current density $\mathbf{J}(\mathbf{r})$ is confined within a finite region of space. Consider the following example corresponding to a rotating charged sphere of radius a, with ρ_0 denoting the uniform charge density within the sphere and ω denoting the angular rotation of the sphere: $$\mathbf{J}(\mathbf{r}') = \begin{cases} \rho_0 \omega \times \mathbf{r}' & \text{for } r' \le a \\ 0 & \text{otherwise} \end{cases}$$ (2) In order to evaluate the vector potential (1) for this problem, we can make use of the expansion: $$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \sum_{lm} \frac{4\pi}{2l+1} \frac{r_{\leq}^l}{r_{\geq}^{l+1}} Y_{lm}(\hat{\mathbf{r}}) Y_{lm}^*(\hat{\mathbf{r}}'). \tag{3}$$ Noting that $$\mathbf{r}' = r' \sqrt{\frac{4\pi}{3}} \left(Y_{1-1}(\hat{\mathbf{r}}') \frac{\hat{\mathbf{x}} + \hat{\mathbf{y}}}{\sqrt{2}} + Y_{11}(\hat{\mathbf{r}}') \frac{\hat{\mathbf{x}} - \hat{\mathbf{y}}}{\sqrt{2}} + Y_{10}(\hat{\mathbf{r}}') \hat{\mathbf{z}} \right), \tag{4}$$ we see that the angular integral result takes the simple form: $$\int d\Omega' \sum_{m} Y_{lm}(\hat{\mathbf{r}}) Y_{lm}^{*}(\hat{\mathbf{r}}') \ \mathbf{r}' = \frac{r'}{r} \mathbf{r} \ \delta_{l1}.$$ (5) Therefore the vector potential for this system is: $$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 \rho_0 \omega \times \mathbf{r}}{3r} \int_0^a dr' \ r'^3 \frac{r_{<}}{r^2}$$ (6) which can be evaluated as: $$\mathbf{A}(\mathbf{r}) = \begin{cases} \frac{\mu_0 \rho_0 \omega \times \mathbf{r}}{3} \left(\frac{a^2}{2} - \frac{3r^2}{10} \right) & \text{for } r \leq a \\ \frac{\mu_0 \rho_0 \omega \times \mathbf{r}}{3r^3} \frac{a^5}{5} & \text{for } r \geq a \end{cases}$$ (7) As another example, consider the current associated with an electron in a spherical atom. In this case, we assume that the current density is due to an electron in a bound atomic state with quantum numbers $|nlm_l\rangle$, as described by a wavefunction $\psi_{nlm_l}(\mathbf{r})$, where the azimuthal quantum number m_l is associated with a factor of the form $e^{im_l\phi}$. For such a wavefunction the quantum mechanical current density operator can be evaluated: $$\mathbf{J}(\mathbf{r}) = \frac{-e\hbar}{2m_e i} \left(\psi_{nlm_l}^* \nabla \psi_{nlm_l} - \psi_{nlm_l} \nabla \psi_{nlm_l}^* \right). \tag{8}$$ Since the only complex part of this wavefunction is associated with the azimuthal quantum number, this can be written: $$\mathbf{J}(\mathbf{r}) = \frac{-e\hbar}{2m_e i r \sin \theta} \left(\psi_{nlm_l}^* \frac{\partial}{\partial \phi} \psi_{nlm_l} - \psi_{nlm_l} \frac{\partial}{\partial \phi} \psi_{nlm_l}^* \right) \hat{\phi} = \frac{-e\hbar m_l \hat{\phi}}{m_e r \sin \theta} \left| \psi_{nlm_l} \right|^2. \tag{9}$$ where m_e denotes the electron mass and e denotes the magnitude of the electron charge. For example, consider the $|nlm = 211\rangle$ state of a H atom: $$\mathbf{J}(\mathbf{r}') = \frac{-e\hbar}{64m\pi a^5} e^{-r'/a} \,\hat{\mathbf{z}} \times \mathbf{r}',\tag{10}$$ where a here denotes the Bohr radius. Using arguments similar to those above, we find that $$\mathbf{A}(\mathbf{r}) = \frac{-e\hbar\mu_0\hat{\mathbf{z}} \times \mathbf{r}}{192m\pi a^5 r} \int_0^\infty dr' \ r'^3 \ e^{-r'/a} \ \frac{r_{<}}{r_{<}^2}.$$ (11) This expression can be integrated to give: $$\mathbf{A}(\mathbf{r}) = \frac{-e\hbar\mu_0\hat{\mathbf{z}} \times \mathbf{r}}{8m\pi r^3} \left[1 - e^{-r/a} \left(1 + \frac{r}{a} + \frac{r^2}{2a^2} + \frac{r^3}{8a^3} \right) \right]. \tag{12}$$