February 23, 2002

Notes for Lecture #17

Derivation of the hyperfine interaction
Magnetic dipole field

These notes are very similar to the notes for Lecture #12 on the electric dipole field.

The magnetic dipole moment is defined by
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The first terms come form evaluating V x A in Eq. 2. The last term of the field expression
follows from the following derivation. We note that Eq. (3) is poorly defined as r — 0, and
consider the value of a small integral of B(r) about zero. (For this purpose, we are supposing
that the dipole m is located at r = 0.) In this case we will approximate
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First we note that
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This result follows from the divergence theorm:
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In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of V x A
smcerA_x( (VxA)+3F - (VxA)+z(z-(V xA)). Note that x- (V x A) =
—V - (% x A) and that we can use the Divergence theorem with V = % x A(r) for the z—
component for example:
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Therefore,
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which is identical to Eq. (5). We can use the identity (as in Lecture Notes 12),
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Now, expressing the vector potential in terms of the current density:
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the integral over €2 in Eq. 5 becomes
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If the sphere R contains the entire current distribution, then r~ = R and r. = 7’ so that

(11) becomes
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which thus justifies the so-called “Fermi contact” term in Eq. 3.
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Magnetic field due to electrons in the vicinity of a nucleus

In Lecturenotes #15, we showed that the current density associated with an electron in a
bound state of an atom as described by a quantum mechanical wavefunction 1, (r) can be
written:
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In the following, it will be convenient to represent the azimuthal unit vector gz§ in terms of
cartesian coordinates:
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The vector potential for this current density can be written
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We want to evaluate the magnetic field B = V x A in the vicinity of the nucleus (r — 0).
Taking the curl of the Eq. 15, we obtain
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Evaluating this expression with (r — 0), we obtain
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Expanding the cross product and expressing the result in spherical polar coordinates, we
obtain in the numerator # x (z x ') = z(1—cos? ') —% cos ' sin @' cos ¢' —§ cos @' sin ' sin ¢').

In evaluating the integration over the azimuthal variable ¢', the X and ¥ components vanish
which reduces to
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