[0][0][0][0][0]
Mar 26, 2002

Notes for Lecture Notes for Lecture #22

Derivation of the Lienard-Wiechert potentials and fields

Consider a point charge q moving on a trajectory Rq(t). We can write its charge density as

r(r,t) = q d3(r-Rq(t)),
(1)
and the current density as
J(r,t) = q .
R
 

q 
(t)d3(r-Rq(t)),
(2)
where
.
R
 

q 
(t) º d Rq(t)
dt
.
(3)
Evaluating the scalar and vector potentials in the Lorentz gauge,
F(r,t) = 1
4pe0
ó
õ
ó
õ
 d3r¢ dt¢  r(r¢,t¢)
|r-r¢|
 d(t¢-(t-|r-r¢|/c)),
(4)
and
A(r,t) = 1
4pe0 c2
ó
õ
ó
õ
 d3r¢ dt¢  J(r¢,t¢)
|r-r¢|
 d(t¢-(t-|r-r¢|/c)).
(5)
We performing the integrations over first d3r¢ and then dt¢, and make use of the fact that for any function of t¢,
ó
õ
¥

¥ 
f(t¢) d(t¢-(t-|r-Rq(t¢)|/c)) = f(tr)
1-
.
R
 

q 
(tr)·(r-Rq(tr))

c|r-Rq(tr)|
,
(6)
where the ``retarded time'' is defined to be
tr º t - |r- Rq(tr)|
(7)
. We find
F(r,t) = q
4pe0
1
R - v·R
c
,
(8)
and
A(r,t) = q
4pe0 c2
v
R - v·R
c
,
(9)
where we have used the shorthand notation R º r- Rq(tr) and v º [(R)\dot]q(tr).

In order to find the electric and magnetic fields, we need to evaluate

E(r,t) = -ÑF(r,t) - A(r,t)
t
(10)
and
B(r,t) = Ñ×A(r,t).
(11)
The trick of evaluating these derivatives is that the retarded time (7) depends on position r and on itself. We can show the following results using the shorthand notation defined above:
Ñtr = - R
c æ
ç
è
R- v·R
c
ö
÷
ø
,
(12)
and
tr
t
= R
æ
ç
è
R- v·R
c
ö
÷
ø
.
(13)

Evaluating the gradient of the scalar potential, we find:

-ÑF(r,t) = q
4 pe0
1
æ
ç
è
R- v·R
c
ö
÷
ø
3

 
é
ê
ê
ê
ë
R æ
ç
è
1- v2
c2
ö
÷
ø
- v
c
æ
ç
è
R - v·R
c
ö
÷
ø
+ R
.
v
 
·R

c2
ù
ú
ú
ú
û
,
(14)
and
- A(r,t)
t
= q
4 pe0
1
æ
ç
è
R- v·R
c
ö
÷
ø
3

 
é
ê
ê
ê
ë
vR
c
æ
ç
ç
ç
è
v2
c2
- v·R
Rc
-
.
v
 
·R

c2
ö
÷
÷
÷
ø
-
.
v
 
R

c2
æ
ç
è
R- v·R
c
ö
÷
ø
ù
ú
ú
ú
û
.
(15)
These results can be combined to determine the electric field:
E(r,t) = q
4 pe0
1
æ
ç
è
R- v·R
c
ö
÷
ø
3

 
é
ê
ê
ê
ë
æ
ç
è
R- vR
c
ö
÷
ø
æ
ç
è
1 - v2
c2
ö
÷
ø
+ æ
ç
ç
ç
è
R× ì
ï
í
ï
î
æ
ç
è
R- vR
c
ö
÷
ø
×
.
v
 

c2
ü
ï
ý
ï
þ
ö
÷
÷
÷
ø
ù
ú
ú
ú
û
.
(16)
We can also evaluate the curl of A to find the magnetic field:
B(r,t) = q
4 pe0 c2
é
ê
ê
ê
ê
ê
ê
ë
-R×v
æ
ç
è
R- v·R
c
ö
÷
ø
3

 
æ
ç
ç
ç
è
1 - v2
c2
+
.
v
 
·R

c2
ö
÷
÷
÷
ø
-
R× .
v
 
/c

æ
ç
è
R- v·R
c
ö
÷
ø
2

 
ù
ú
ú
ú
ú
ú
ú
û
.
(17)
One can show that the electric and magnetic fields are related according to
B(r,t) = R×E(r,t)
c R
.
(18)


File translated from TEX by TTH, version 2.20.
On 26 Mar 2002, 17:50.