[0][0][0][0][0]
Mar 26, 2002
Notes for Lecture
Notes for Lecture #22
Derivation of the Lienard-Wiechert potentials and fields
Consider a point charge q moving on a trajectory Rq(t). We can
write its charge density as
and the current density as
J(r,t) = q |
. R
|
q
|
(t)d3(r-Rq(t)), |
| (2) |
where
Evaluating the scalar and vector potentials in the Lorentz gauge,
F(r,t) = |
1 4pe0
|
|
ó õ
|
|
ó õ
|
d3r¢ dt¢ |
r(r¢,t¢) |r-r¢|
|
d(t¢-(t-|r-r¢|/c)), |
| (4) |
and
A(r,t) = |
1 4pe0 c2
|
|
ó õ
|
|
ó õ
|
d3r¢ dt¢ |
J(r¢,t¢) |r-r¢|
|
d(t¢-(t-|r-r¢|/c)). |
| (5) |
We performing the integrations over first d3r¢ and then dt¢, and
make use of the fact that for any function of t¢,
|
ó õ
|
¥
¥
|
f(t¢) d(t¢-(t-|r-Rq(t¢)|/c)) = |
f(tr)
|
, |
| (6) |
where the ``retarded time'' is defined to be
.
We find
and
where we have used the shorthand notation R º r- Rq(tr)
and v º [(R)\dot]q(tr).
In order to find the electric and magnetic fields, we need to evaluate
E(r,t) = -ÑF(r,t) - |
¶A(r,t) ¶t
|
|
| (10) |
and
The trick of evaluating these derivatives is that the retarded time (7)
depends on position r and on itself. We can show the following results
using the shorthand notation defined above:
and
Evaluating the gradient of the scalar potential, we find:
-ÑF(r,t) = |
q 4 pe0
|
|
1
|
|
é ê ê
ê ë
|
R |
æ ç
è
|
1- |
v2 c2
|
ö ÷
ø
|
- |
v c
|
|
æ ç
è
|
R - |
v·R c
|
ö ÷
ø
|
+ R |
c2
|
ù ú ú
ú û
|
, |
| (14) |
and
- |
¶A(r,t) ¶t
|
= |
q 4 pe0
|
|
1
|
|
é ê ê
ê ë
|
|
vR c
|
|
æ ç ç
ç è
|
v2 c2
|
- |
v·R Rc
|
- |
c2
|
ö ÷ ÷
÷ ø
|
- |
c2
|
|
æ ç
è
|
R- |
v·R c
|
ö ÷
ø
|
ù ú ú
ú û
|
. |
| (15) |
These results can be combined to determine the electric field:
E(r,t) = |
q 4 pe0
|
|
1
|
|
é ê ê
ê ë
|
|
æ ç
è
|
R- |
vR c
|
ö ÷
ø
|
|
æ ç
è
|
1 - |
v2 c2
|
ö ÷
ø
|
+ |
æ ç ç
ç è
|
R× |
ì ï í
ï î
|
æ ç
è
|
R- |
vR c
|
ö ÷
ø
|
× |
c2
|
ü ï ý
ï þ
|
ö ÷ ÷
÷ ø
|
ù ú ú
ú û
|
. |
| (16) |
We can also evaluate the curl of A to find the magnetic field:
B(r,t) = |
q 4 pe0 c2
|
|
é ê ê ê
ê ê ê ë
|
-R×v
|
|
æ ç ç
ç è
|
1 - |
v2 c2
|
+ |
c2
|
ö ÷ ÷
÷ ø
|
- |
|
ù ú ú ú
ú ú ú û
|
. |
| (17) |
One can show that the electric and magnetic fields are related according to
File translated from TEX by TTH, version 2.20.
On 26 Mar 2002, 17:50.