March 26, 2002

Notes for Lecture #22

Derivation of the Lienard-Wiechert potentials and fields

Consider a point charge ¢ moving on a trajectory R,(t). We can write its charge density as

p(r,t) = ¢6°(r — Ry (1)), (1)
and the current density as '
J(r, 1) = qR(1)8°(r — Ry(1)), (2)
where
R, (t) = dfz‘;(t). (3)

Evaluating the scalar and vector potentials in the Lorentz gauge,
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We performing the integrations over first d®r’ and then dt’, and make use of the fact that
for any function of t',
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where the “retarded time” is defined to be
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where we have used the shorthand notation R = r — R (t,) and v = R,(t,).

In order to find the electric and magnetic fields, we need to evaluate
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and

B(r,t) =V x A(r,1). (11)

The trick of evaluating these derivatives is that the retarded time (7) depends on position r
and on itself. We can show the following results using the shorthand notation defined above:
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Evaluating the gradient of the scalar potential, we find:
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and
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These results can be combined to determine the electric field:

E(r,t) = 4:60 T _1%)3 l(R— V—f) (1 - Z—j) 4 (R x {(R— ﬂ) x i})] . (16)
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We can also evaluate the curl of A to find the magnetic field:
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One can show that the electric and magnetic fields are related according to
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B(r, 1) = %R(r’t). (18)



