January 23, 2002

Notes for Lecture #3

Form of Green’s function solutions to the Poisson equation

According to Eq. 1.35 of your text for any two three-dimensional functions ¢(r) and ¢(r),
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where T denotes a unit vector normal to the integration surface. We can choose to evaluate
this expression with ¢(r) = ®(r) (the electrostatic potential) and v (r) = G(r,r’), and also
make use of the identities:

via(r) = - @
and
V2G(r,r') = —47é(r — 1'). (3)

Then, the Green’s identity (1) becomes
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This expression can be further evaluated. If the arbitrary position, r’ is included in the
integration volume, then the equation (4) becomes

o(r') = /Vol G(r, r')%d?’r + % - {G(r, v )V®(r) — ®(r)VG(r,r')} - #d*r.  (5)

This expression is the same as Eq. 1.42 of your text if we switch the variables r' < r and
also use the fact that Green’s function is symmetric in its arguments: G(r,r') = G(r',r).

Mean value theorem for solutions to the Laplace equation

Consider an electrostatic field ®(r) in a charge-free region so that it satisfies the Laplace
equation:
V20(r) = 0. (6)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of ®(r) at the arbitrary (charge-free) point r is equal to the average of ®(r’) over the



surface of any sphere centered on the point r (see Jackson problem #1.10). One way to
prove this theorem is the following. Consider a point r' = r + u, where u will describe a
sphere of radius R about the fixed point r. We can make a Taylor series expansion of the
electrostatic potential ®(r') about the fixed point r:
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According to the premise of the theorem, we want to integrate both sides of the equation 7
over a sphere of radius R in the variable u:
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Since V?®(r) = 0, the only non-zero term of the average it thus the first term:
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Since this result is independent of the radius R, we see that we have proven the theorem.



