April 25, 2002

Notes for Lecture #35

Synchrotron Radiation

For this analysis we will use the geometry shown in Fig. 14.9 of Jackson. A particle with
charge ¢ is moving in a circular trajectory with radius p and speed v. Its trajectory as a
function of time ¢ is given by

ry(t) = psin(vt/p)X + p (1 — cos(vt/p)) §. (1)
Its velocity as a function time is given by
vy(t) = veos(vt/p)x + vsin(vt/p)y. (2)

The spectral intensity that we must evaluate is given by the expression (Eq. 14.67 in Jackson)
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After some algebra, this expression can be put into the form
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where the amplitude for the light polarized along the y-axis is given by
CH((JJ) — / dt Sin(vt/p)eiw(t—g cos O sin(vt/p)) (5)
and the amplitude for the light polarized perpendicular to ¥ and # is given by
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We will analyze this expression for two different cases. The first case, is appropriate for
man-made synchrotrons used as light sources. In this case, the light is produced by short
bursts of electrons moving close to the speed of light (v ~ ¢(1 —1/(27?)) passing a beam line
port. In addition # = 0 and the relevant integration times ¢ are close to ¢ =~ 0. This results
in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms
of a critical frequency
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The resultant intensity is then given by

d*I 3¢°7 (w)\? 202\2 w
dwdQ — 4r2c (w_) (14776%) {KQ/?’ <2w

7202
14 262

(1+ 7202))]2 + [Kl/?, (2%6(1 + 7202))]2}-

(8)

c



By plotting this expression as a function of w, we see that the intensity is largest near w ~ w,.

The second example of synchroton radiation comes from a distant charged particle moving
in a circular trajectory such that the spectrum represents a superposition of light generated
over many complete circles. In this case, there is an interference effect which results in the
spectrum consisting of discrete multiples of v/p. For this case we need to reconsider Egs. 5
and 6. There is a very convenient Bessel function identity of the form:
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Here J,(a) is a Bessel function of integer order m. In our case a = “2cosf and o = %'

Analyzing the “parallel” component we have
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In determining this result, we have used the identity
/ dte @™m0t = 276 (w — mg). (11)
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Eq. 10 can be simplified to show that
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where J; (a) = d‘]gl—a(“). The “perpendicular” component can be analyzed in a similar way,
using integration by parts to eliminate the extra cos(vt/p) term in the argument. The result
is
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In both of these expressions, the sum over m includes both negative and positive values of
m. However, only the positive values of w and therefore positive values of m are of interest,
and if we needed to use the negative m values, we could use the identity

T_m(a) = (=1)™ Ju(a). (14)

Combining these results, we find that the intensity spectrum for this case consists of a series
of discrete frequencies which are multiples of v/p.
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These results were derived by Julian Schwinger (Phys. Rev. 75, 1912-1925 (1949)). The
discrete case is similar to the result quoted in Problem 14.15 in Jackson’s text. It should have
some implications for Astronomical observations, but I have not yet found any references for
that.



