February 2, 2002

Notes for Lecture #8

Finite element method

The finite element approach is based on an expansion of the unknown electrostatic potential
in terms of known grid-based functions of fixed shape. In two dimensions, using the indices
{i,j} to reference the grid, we can denote the shape functions as {¢;;(z,y)}. The finite
element expansion of the potential in two dimensions can take the form:

dmeg®(z,y) = Zl/)ijﬁbz’j(xay), (1)

where v;; represents the amplitude associated with the shape function ¢;;(x,y). The ampli-
tude values can be determined for a given solution of the Poisson equation:

_VQ (477—60(1)(1‘7 y)) = 47Tp(33, y): (2)
by solving a linear algebra problem of the form
> Mijthij = G, (3)
ij
where
M5 = /d$/dyv¢kl($,y)‘Vﬁbz‘j(fvay) and Gy = /dfv/dyﬁbkl(x,y) dmp(z,y).  (4)

In obtaining this result, we have assumed that the boundary values vanish. In order for this
result to be useful, we need to be able evaluate the integrals for My;;; and for Gy;. In the
latter case, we need to know the form of the charge density. The form of My, ;; only depends
upon the form of the shape functions. If we take these functions to be:

¢ij(xay) = ‘Xl(x)yj(y)’ (5)

where -
(1—T’) forxi—.hgxgmﬁ—h, (6)
0 otherwise

and Y;(y) has a similar expression in the variable y. Then

dYi(y) dY;(y)
o dy | (7)

My = /da:/dy ldf;x(i) dé\zix)yl(y)yj(y) + X () Xi()

There are four types of non-trivial contributions to these values:
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These basic ingredients lead to the following distinct values for the matrix:
g fork=7andl=j
My; =4 —3 fork—i=+1land/orl—j=+1 . (12)
0  otherwise

For problems in which the boundary values are 0, Eq. 3 then can be used to find all of the
interior amplitudes ;.

In order to use this technique to solve the boundary value problem discussed in Lecture
Notes #5, we have to make one modification. The boundary value of ®(z,a) = V} is not
consistent with the derivation of Eq. (4), however, since we are only interested in the region
0 <y < a, we can extend our numerical analysis to the region 0 < y < a + h and require
®(z,a + h) = 0 in addition to ®(z,a) = V. Using the same indexing as in Lecture Notes
#5, this means that v; = ¥ = 13 = Vj. The finite element approach for this problem thus
can be put into the matrix form for analysis by Maple:

8/3 -1/3 —-1/3 —-1/3 0 0 Vs 1
-2/3 8/3 —-2/3 —-1/3 0 0 Ve 1
-1/3 -1/3 8/3 -1/3 —-1/3 —-1/3 g 0
o3 13 —23 83 —23 13 || we | |0 |V (13)
0 o -1/3 -1/3 8/3 -—-1/3 (58} 0
0 0o -2/3 -1/3 -2/3 8/3 Y12 0
The solution to these equations and the exact results are found to be:
Y5 0.5070276498 4320283318
Ve 5847926267 .5405292183
s 0.1928571429 1820283318
= Vo; (exact) = Vo. (14)
g 0.2785714286 0.25
Y11 0.07154377880 06797166807
Y12 0.1009216590 .09541411792

We see that the results are similar to those obtained using the finite difference approach.



