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Summary of perturbation theory equations

Time independent perturbation expansion

Suppose we have a reference Hamiltonian Hy for which we know all of the eigenvalues and

eigenfunctions:
Ho®,, = B0, (1)

Now we want to approximate the eigenvalues F,, and eigenfunctions ®,, of total Hamiltonian
H = Ho + Hq, where the second term is small compared to the reference Hamiltonian term.
If the n'* zero-order eigenstate (ED) is not degenerate, then we can make the following
expansion. We will use the shorthand notation (®9|H;|®° ) = Vim.
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En ~ E2+Vnn+ ; M +O(V3) (2)
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If, on the other hand, the zero-order eigenstate (E°) is degenerate with one or more other
eigenstates, another method must be used. Suppose there are NV such degenerate states which
we will label {®? }, where i = 1,2,... N. We suppose that we can find N new zero-order
states {®%} from linear combinations of the original states, by diagonalizing the following
N x N matrix:
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The energy eigenvalues { E*} correspond to corrections up to first order in the perturbation
for this system. Each eigenvalue E* corresponds to a linear combination of the zero order
eigenfunctions in terms of the coefficients {Cy }:
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If necessary, these new zero order eigenfunctions can now be corrected to first and higher
order using the non-degenerate formalism.



Variational methods

It is a general property of a Hermitian operator, like the Hamiltonian 7{, that the lowest
eigenvalue Fj satisfies an inequality of the form

(@1H]9)
Bo =g

In this expression ¢ represents a trial wavefunction. The equality holds when ¢ = 1)y, the
exact ground state wavefunction.

(6)

We can use the inequality of Eq. (6) to actively search for the minimum using variational
techniques. This leads to a very powerful and well-used approximation scheme. To demon-
strate how it works for a simple case, consider the Hamiltonian for a hydrogen atom:
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We are interested in finding an approximation to the ground state wavefunction, which we can
assume to be spherically symmetric. For example, suppose that we take a trial wavefunction

of the form ,
e_OCI'

¢(T) = \/E’ (8)

where « is the variational parameter to be determined. We need to carry out the following
integrals:

Bllo) = [ rrdre = 1y [25. (9)
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Putting all of these results, to gether, we find
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In order to simplify the notation, we define the Bohr radius:
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In these terms,

Ela) = - (3aa3 - %) . (14)



In order to find the minimum value of E(«), we evaluate
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to find 872
= ) 16
@0 9ma} (16)

We can then evaluate the minimum energy:
e? 872
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This result is 15% higher energy the correct answer, since

E(Oéo) —_ E()

= —0.15. 1
T 0.15 (18)

A plot of the exact and optimized trial wavefunctions are shown below.
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Considering the incorrect shape of the optimized trial wavefunction, the accuracy of the
energy estimate is remarkable.



