PHY 114 - Third Hour Test - Solutions

1. (a)

$$
\begin{gather*}
I_{\max }=\frac{\mathcal{E}_{\max }}{Z} \tag{1}\\
Z=\sqrt{R^{2}+\left(\omega_{1} L-\frac{1}{\omega_{1} C}\right)^{2}}=15.506 \Omega . \tag{2}\\
I_{\max }=\frac{75}{15.506}=4.8369 \mathrm{~A} . \tag{3}
\end{gather*}
$$

(b)

$$
\begin{equation*}
i(t)=I_{\max } \cos \left(\omega_{1} t-\phi\right)=\frac{d q}{d t} \tag{4}
\end{equation*}
$$

It then follows that

$$
\begin{gather*}
q(t)=\frac{I_{\max }}{\omega_{1}} \sin \left(\omega_{1} t-\phi\right)=Q_{\max } \sin \left(\omega_{1} t-\phi\right) . \tag{5}\\
Q_{\max }=\frac{I_{\max }}{\omega_{1}}=0.01727 C . \tag{6}
\end{gather*}
$$

(c)

$$
\begin{gather*}
\mathcal{E}_{L}=-L \frac{d I}{d t}=L \omega_{1} I_{\max } \cos \left(\omega_{1} t-\phi\right) \tag{7}\\
\left.\mathcal{E}_{L}\right\rfloor_{\max }=L \omega_{1} I_{\max }=5417.33 \tag{8}
\end{gather*}
$$

(d)

$$
\begin{equation*}
P=\frac{1}{2} I_{\max }^{2} R=\frac{1}{2}(4.8369)^{2} \cdot 15 \mathrm{~W}=175.47 \mathrm{~W} \tag{9}
\end{equation*}
$$

2. (a) Gauss's law which is equivalent to Coulomb's law and which describes how electrical charges produce an electric field.

$$
\begin{equation*}
\oint \mathbf{E} \cdot \mathbf{d} \mathbf{A}=Q / \epsilon_{0} \tag{10}
\end{equation*}
$$

(b) Gauss's law for magnetic fields which is consistent with the observation that there are no magnetic monopole source.

$$
\begin{equation*}
\oint \mathbf{B} \cdot \mathbf{d A}=0 . \tag{11}
\end{equation*}
$$

(c) Faraday's law which represents the production of electric fields by a time varying magnetic flux.

$$
\begin{equation*}
\oint \mathbf{E} \cdot \mathbf{d s}=-\frac{d \Phi_{B}}{d t} \tag{12}
\end{equation*}
$$

(d) Ampere's and Maxwell's law which represents the production of magnetic fields by a current and by a time varying electric flux.

$$
\begin{equation*}
\oint \mathbf{B} \cdot \mathbf{d} \mathbf{s}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t} . \tag{13}
\end{equation*}
$$

For a plane-wave form of an electromagnetic wave, with the electric field along the $\hat{\mathbf{y}}$ direction and the magnetic field along the $\hat{\mathbf{z}}$ direction, Faraday's law and Ampere-Maxwell's law reduce to

$$
\begin{gather*}
\frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t} \tag{14}\\
\frac{\partial B_{z}}{\partial x}=-\mu_{0} \epsilon_{0} \frac{\partial E_{y}}{\partial t} . \tag{15}
\end{gather*}
$$

We can substitute these equations into each other, to find two uncoupled equations for the electric and magnetic fields:

$$
\begin{align*}
\frac{\partial^{2} E_{y}}{\partial t^{2}} & =\frac{1}{\mu_{0} \epsilon_{0}} \frac{\partial^{2} E_{y}}{\partial x^{2}} . \tag{16}\\
\frac{\partial^{2} B_{z}}{\partial t^{2}} & =\frac{1}{\mu_{0} \epsilon_{0}} \frac{\partial^{2} B_{z}}{\partial x^{2}} . \tag{17}
\end{align*}
$$

These are both wave equations with velocity $c=\sqrt{1 /\left(\mu_{0} \epsilon_{0}\right)}$.
3. (a) Reading the vertical axis of the graph, we see that $E_{\max }=2 \mathrm{~V} / \mathrm{m}$.
(b) The wave completes a cycle at $x \approx 0.6 \mathrm{~m}$. So we infer the $\lambda \approx 0.6 \mathrm{~m}$.
(c)

$$
\begin{equation*}
f=\frac{c}{\lambda}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{0.6 \mathrm{~m}}=5 \times 10^{8} \mathrm{cycles} / \mathrm{s} \tag{18}
\end{equation*}
$$

(d) The magnetic field is oriented along the $\hat{\mathbf{z}}$ axis and has the maximum magnitude

$$
\begin{equation*}
B_{\max }=\frac{E_{\max }}{c}=6.67 \times 10^{-9} T \tag{19}
\end{equation*}
$$

4.

(a) We can use Snell's law $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$. We know the angles θ_{1} and θ_{2} and therefore can find the ratio of the refractive indices.

$$
\begin{equation*}
\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=2.138 \tag{20}
\end{equation*}
$$

(b) From the previous analysis, we see the $n_{1}>n_{2}$ so the light can be totally internally reflected within medium 1 as shown in the diagram. The smallest angle θ for which this can occur is

$$
\begin{equation*}
\theta \geq \theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)=27.88^{\circ} . \tag{21}
\end{equation*}
$$

End of $\operatorname{Exam}^{* ~}$

