Notes on numerical solutions of Schrödinger equation

Consider the following one-dimensional Schrödinger equation:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right] \psi_{n}(x)=E_{n} \psi_{n}(x) \tag{1}
\end{equation*}
$$

where $V(x)$ is a given potential function, and E_{n} is the energy eigenvalue associated with the eigenfunction $\psi_{n}(x)$. This can either represent a bound state or a continuum state. One basic approach to developing accurate numerical approximations to the solution of these equations is to use a Taylor's series expansion to relate the behavior of $\frac{d^{2} \psi_{n}(x)}{d x^{2}}$ to $\psi_{n}\left(x^{\prime}\right)$ for points x^{\prime} in the neighborhood of x. Note that for any small distance s,

$$
\begin{equation*}
\psi_{n}(x \pm s)=\psi_{n}(x) \pm s \frac{d \psi_{n}(x)}{d x}+\frac{s^{2}}{2} \frac{d^{2} \psi_{n}(x)}{d x^{2}} \pm \frac{s^{3}}{3} \frac{d^{3} \psi_{n}(x)}{d x^{3}}+\frac{s^{4}}{4} \frac{d^{4} \psi_{n}(x)}{d x^{4}} \ldots \tag{2}
\end{equation*}
$$

This means that if s is small, we can approximate the second derivative according to

$$
\begin{equation*}
\frac{d^{2} \psi_{n}(x)}{d x^{2}} \approx \frac{\psi_{n}(x+s)+\psi_{n}(x-s)-2 \psi_{n}(x)}{s^{2}}+O\left(s^{4}\right) . \tag{3}
\end{equation*}
$$

This central difference approximation can be used to solve both bound state and scattering state solutions of the Schrodinger equation 1. For an an example suppose the we have a bound state problem with the boundary conditions $\psi_{n}(0)=\psi_{n}(X)=0$ We then divide the interval $0 \leq x \leq X$ into N intervals with $X=(N+1) s$.

Then we can use Eq. (3) to replace the kinetic energy operator. The Schrödinger Equation then takes the form of a tri-diagonal eigenvalue problem:

$$
\begin{equation*}
M v_{n}=\lambda_{n} v_{n} \tag{4}
\end{equation*}
$$

where

$$
M=\left(\begin{array}{ccccc}
b_{1} & c_{1} & 0 & 0 & . . \tag{5}\\
a_{2} & b_{2} & c_{2} & 0 & . . \\
0 & a_{3} & b_{3} & c_{3} & . . \\
0 & 0 & a_{4} & b_{4} & . . \\
. . & . . & . . & . . & . .
\end{array}\right)
$$

The diagonal elements are $b_{i}=2+s^{2}\left[2 m V(i s) / \hbar^{2}\right]$ and the off-diagonal elements are $a_{i} \equiv$ $c_{i} \equiv-1$. Here it is assumed that X is divided into N intervals with $X=(N+1)$ s. v_{n} represents a vector of N coefficients $\left\{\psi_{n}(i s)\right\}$, with $i=1,2,3 \ldots N$. The energy eigenvalues are given by $\lambda_{n}=s^{2}\left[2 m E_{n} / \hbar^{2}\right]$. One can show that the error of this numerical procedure is of order $O\left(s^{4} \psi^{i v}(x)\right)$.

By keeping the next even term in the Taylor series expansion, one can derive a Numerov algorithm for this problem which takes the form:

$$
\begin{equation*}
M v_{n}=\lambda_{n} S v_{n} . \tag{6}
\end{equation*}
$$

Here M is a tridiagonal matrix having the same form as above, and S is a positive definite tridiagonal matrix having the form:

$$
S=\left(\begin{array}{ccccc}
\beta_{1} & \gamma_{1} & 0 & 0 & . . \tag{7}\\
\alpha_{2} & \beta_{2} & \gamma_{2} & 0 & . . \\
0 & \alpha_{3} & \beta_{3} & \gamma_{3} & . . \\
0 & 0 & \alpha_{4} & \beta_{4} & . . \\
. . & . . & . . & . . & . .
\end{array}\right) .
$$

In this expression, $\beta_{i} \equiv 10 / 12$ and $\alpha_{i} \equiv \gamma_{i} \equiv 1 / 12$, while $b_{i} \equiv 2+\frac{10}{12} s^{2}\left[2 m V(i s) / \hbar^{2}\right]$, $a_{i} \equiv-1+\frac{1}{12} s^{2}\left[2 m V((i-1) s) / \hbar^{2}\right]$, and $c_{i} \equiv-1+\frac{1}{12} s^{2}\left[2 m V((i+1) s) / \hbar^{2}\right]$. One can show that the error of this numerical procedure is of order $O\left(s^{6} \psi^{v i}(x)\right)$.

