Notes for Lecture #1

1 Introduction

- 1. Textbook and course structure
- 2. Motivation
- 3. Chapters I and 1 and Appendix of Jackson
 - (a) Units SI vs Gaussian
 - (b) Laplace and Poisson Equations
 - (c) Green's Theorm

2 Units - SI vs Gaussian

Coulomb's law has the form:

$$F = K_C \frac{q_1 q_2}{r_{12}^2}.$$
 (1)

Ampere's law has the form:

$$F = K_A \frac{i_1 i_2}{r_{12}^2} \, d\mathbf{s_1} \times d\mathbf{s_2} \times \hat{\mathbf{r}}_{12},\tag{2}$$

where the current and charge are related by $i_1 = dq_1/dt$ for all unit systems. The two constants K_C and K_A are related so that their ratio K_C/K_A has the units of $(m/s)^2$ and it is *experimentally* known that in both the SI and CGS (Gaussian) unit systems, it the value $K_C/K_A = c^2$, where c is the speed of light.

The choices for these constants in the SI and Gaussian units are given below:

	CGS (Gaussian)	SI
K_C	1	$\frac{1}{4\pi\epsilon_0}$
K_A	$\frac{1}{c^2}$	$\frac{\mu_0}{4\pi}$

Here, $\frac{\mu_0}{4\pi} \equiv 10^{-7} N/A^2$ and $\frac{1}{4\pi\epsilon_0} = c^2 \cdot 10^{-7} N/A^2 = 8.98755 \times 10^9 N \cdot m^2/C^2$.

Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so labeled and are used to define the derived units.

Variable	SI		Gaussian		SI/Gaussian
	Unit	Relation	Unit	Relation	
length	m	fundamental	cm	fundamental	100
mass	kg	fundamental	gm	fundamental	1000
time	s	fundamental	S	fundamental	1
force	N	$kg\cdot m^2/s$	dyne	$gm\cdot cm^2/s$	10^{5}
current	A	fundamental	statampere	statcoulomb/s	$\frac{1}{10c}$
charge	C	$A \cdot s$	statcoulomb	$\sqrt{dyne\cdot cm^2}$	$\frac{1}{10c}$

One advantage of the Gaussian system is that all of the field vectors: $\mathbf{E}, \mathbf{D}, \mathbf{B}, \mathbf{H}, \mathbf{P}, \mathbf{M}$ have the same dimensions, and in vacuum, $\mathbf{B} = \mathbf{H}$ and $\mathbf{E} = \mathbf{D}$ and the dielectric and permittivity constants ϵ and μ are unitless.

CGS (Gaussian)	SI
$\nabla \cdot \mathbf{D} = 4\pi\rho$	$\nabla \cdot \mathbf{D} = \rho$
$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
$ abla imes {f E} = -rac{1}{c} rac{\partial {f B}}{\partial t}$	$ abla imes {f E} = -rac{\partial {f B}}{\partial t}$
$ abla imes \mathbf{H} = rac{4\pi}{c} \mathbf{J} + rac{1}{c} rac{\partial \mathbf{D}}{\partial t}$	$ abla imes \mathbf{H} = \mathbf{J} + rac{\partial \mathbf{D}}{\partial t}$
$\mathbf{F} = q(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}$	$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}$
$u = \frac{1}{8\pi} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$u = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$
$\mathbf{S} = \frac{c}{4\pi} (\mathbf{E} \times \mathbf{H})$	$\mathbf{S} = (\mathbf{E} \times \mathbf{H})$

"Proof" of the identity (Eq. (1.31))

$$\nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = -4\pi \delta^3 (\mathbf{r} - \mathbf{r}').$$
(3)

Noting that

$$\int_{\text{small sphere}} \int_{\text{about } \mathbf{r}'} d^3 r \, \delta^3(\mathbf{r} - \mathbf{r}') f(\mathbf{r}) = f(\mathbf{r}'), \tag{4}$$

we see that we must show that

$$\int_{\text{small sphere}} \int_{\text{about } \mathbf{r}'} d^3 r \, \nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) f(\mathbf{r}) = -4\pi f(\mathbf{r}'). \tag{5}$$

We introduce a small radius a such that:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \lim_{a \to 0} \frac{1}{\sqrt{|\mathbf{r} - \mathbf{r}'|^2 + a^2}}.$$
(6)

For a fixed value of a,

$$\nabla^2 \frac{1}{\sqrt{|\mathbf{r} - \mathbf{r}'|^2 + a^2}} = \frac{-3a^2}{(|\mathbf{r} - \mathbf{r}'|^2 + a^2)^{5/2}}.$$
(7)

If the function $f(\mathbf{r})$ is continuous, we can make a Taylor expansion of it about the point $\mathbf{r} = \mathbf{r}'$, keeping only the first term. The integral over the small sphere about \mathbf{r}' can be carried out analytically, by changing to a coordinate system centered at \mathbf{r}' ;

$$\mathbf{u} = \mathbf{r} - \mathbf{r}',\tag{8}$$

so that

$$\int_{\text{small sphere}} \int_{a\to 0} d^3 r \, \nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) f(\mathbf{r}) \approx f(\mathbf{r}') \lim_{a\to 0} \int_{u < R} d^3 u \frac{-3a^2}{(u^2 + a^2)^{5/2}}.$$
(9)

We note that

$$\int_{u < R} d^3 u \frac{-3a^2}{(u^2 + a^2)^{5/2}} = 4\pi \int_0^R du \, \frac{-3a^2 u^2}{(u^2 + a^2)^{5/2}} = 4\pi \frac{-R^3}{(R^2 + a^2)^{3/2}}.$$
 (10)

If the infinitesimal value a is $a \ll R$, then $(R^2 + a^2)^{3/2} \approx R^3$ and the right hand side of Eq. 10 is -4π . Therefore, Eq. 9 becomes,

$$\int_{\text{small sphere}} \int_{\text{about } \mathbf{r}'} d^3 r \, \nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) f(\mathbf{r}) \approx f(\mathbf{r}')(-4\pi), \tag{11}$$

which is consistent with Eq. 5.