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Notes for Lecture #1

1 Introduction

1. Textbook and course structure

2. Motivation

3. Chapters I and 1 and Appendix of Jackson

(a) Units - SI vs Gaussian

(b) Laplace and Poisson Equations

(c) Green’s Theorm

2 Units - SI vs Gaussian

Coulomb’s law has the form:
F = KC

q1q2

r2
12

. (1)

Ampere’s law has the form:

F = KA
i1i2
r2
12

ds1 × ds2 × r̂12, (2)

where the current and charge are related by i1 = dq1/dt for all unit systems. The two
constants KC and KA are related so that their ratio KC/KA has the units of (m/s)2 and it
is experimentally known that in both the SI and CGS (Gaussian) unit systems, it the value
KC/KA = c2, where c is the speed of light.

The choices for these constants in the SI and Gaussian units are given below:

CGS (Gaussian) SI

KC 1 1
4πε0

KA
1
c2

µ0

4π

Here, µ0

4π
≡ 10−7N/A2 and 1

4πε0
= c2 · 10−7N/A2 = 8.98755× 109N ·m2/C2.



Below is a table comparing SI and Gaussian unit systems. The fundamental units for each
system are so labeled and are used to define the derived units.

Variable SI Gaussian SI/Gaussian
Unit Relation Unit Relation

length m fundamental cm fundamental 100

mass kg fundamental gm fundamental 1000

time s fundamental s fundamental 1

force N kg ·m2/s dyne gm · cm2/s 105

current A fundamental statampere statcoulomb/s 1
10c

charge C A · s statcoulomb
√

dyne · cm2 1
10c

One advantage of the Gaussian system is that all of the field vectors: E,D,B,H,P,M have
the same dimensions, and in vacuum, B = H and E = D and the dielectric and permittivity
constants ε and µ are unitless.

CGS (Gaussian) SI

∇ ·D = 4πρ ∇ ·D = ρ

∇ ·B = 0 ∇ ·B = 0

∇× E = −1
c

∂B
∂t

∇× E = −∂B
∂t

∇×H = 4π
c
J + 1

c
∂D
∂t

∇×H = J + ∂D
∂t

F = q(E + v
c
×B F = q(E + v ×B

u = 1
8π

(E ·D + B ·H) u = 1
2
(E ·D + B ·H)

S = c
4π

(E×H) S = (E×H)

“Proof” of the identity (Eq. (1.31))

∇2

(
1

|r− r′|

)
= −4πδ3(r− r′). (3)



Noting that ∫
small sphere
about r′

d3r δ3(r− r′)f(r) = f(r′), (4)

we see that we must show that

∫
small sphere
about r′

d3r ∇2

(
1

|r− r′|

)
f(r) = −4πf(r′). (5)

We introduce a small radius a such that:

1

|r− r′|
= lim

a→0

1√
|r− r′|2 + a2

. (6)

For a fixed value of a,

∇2 1√
|r− r′|2 + a2

=
−3a2

(|r− r′|2 + a2)5/2
. (7)

If the function f(r) is continuous, we can make a Taylor expansion of it about the point
r = r′, keeping only the first term. The integral over the small sphere about r′ can be carried
out analytically, by changing to a coordinate system centered at r′;

u = r− r′, (8)

so that ∫
small sphere
about r′

d3r ∇2

(
1

|r− r′|

)
f(r) ≈ f(r′) lim

a→0

∫
u<R

d3u
−3a2

(u2 + a2)5/2
. (9)

We note that∫
u<R

d3u
−3a2

(u2 + a2)5/2
= 4π

∫ R

0
du

−3a2u2

(u2 + a2)5/2
= 4π

−R3

(R2 + a2)3/2
. (10)

If the infinitesimal value a is a � R, then (R2 + a2)3/2 ≈ R3 and the right hand side of
Eq. 10 is −4π. Therefore, Eq. 9 becomes,∫

small sphere
about r′

d3r ∇2

(
1

|r− r′|

)
f(r) ≈ f(r′)(−4π), (11)

which is consistent with Eq. 5.


