Notes for Lecture \#15

Vector potentials in magnetostatics

The vector potential corresponding to a current density distribution $\mathbf{J}(\mathbf{r})$ is given by

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{1}
\end{equation*}
$$

This expression is useful if the current density $\mathbf{J}(\mathbf{r})$ is confined within a finite region of space. Consider the following example corresponding to a rotating charged sphere of radius a, with ρ_{0} denoting the uniform charge density within the sphere and ω denoting the angular rotation of the sphere:

$$
\mathbf{J}\left(\mathbf{r}^{\prime}\right)= \begin{cases}\rho_{0} \omega \times \mathbf{r}^{\prime} & \text { for } r^{\prime} \leq a \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

In order to evaluate the vector potential (1) for this problem, we can make use of the expansion:

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\sum_{l m} \frac{4 \pi}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}^{*}\left(\hat{\mathbf{r}}^{\prime}\right) . \tag{3}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\mathbf{r}^{\prime}=r^{\prime} \sqrt{\frac{4 \pi}{3}}\left(Y_{1-1}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{\hat{\mathbf{x}}+\mathbf{i} \hat{\mathbf{y}}}{\sqrt{2}}+Y_{11}\left(\hat{\mathbf{r}^{\prime}}\right) \frac{-\hat{\mathbf{x}}+\mathbf{i} \hat{\mathbf{y}}}{\sqrt{2}}+Y_{10}\left(\hat{\mathbf{r}^{\prime}}\right) \hat{\mathbf{z}}\right), \tag{4}
\end{equation*}
$$

we see that the angular integral result takes the simple form:

$$
\begin{equation*}
\int d \Omega^{\prime} \sum_{m} Y_{l m}(\hat{\mathbf{r}}) Y_{l m}^{*}\left(\hat{\mathbf{r}}^{\prime}\right) \mathbf{r}^{\prime}=\frac{r^{\prime}}{r} \mathbf{r} \delta_{l 1} . \tag{5}
\end{equation*}
$$

Therefore the vector potential for this system is:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0} \rho_{0} \omega \times \mathbf{r}}{3 r} \int_{0}^{a} d r^{\prime}{r^{\prime 3}}^{\frac{r_{<}}{r_{>}^{2}}}, \tag{6}
\end{equation*}
$$

which can be evaluated as:

$$
\mathbf{A}(\mathbf{r})=\left\{\begin{array}{ll}
\frac{\mu_{0} \rho_{0} \omega \times \mathbf{r}}{3}\left(\frac{a^{2}}{2}-\frac{3 r^{2}}{10}\right) & \text { for } r \leq a \tag{7}\\
\frac{\mu_{0} \rho_{0} \omega \times \mathbf{r}}{3 r^{3}} \frac{a^{5}}{5} & \text { for } r \geq a
\end{array} .\right.
$$

As another example, consider the current associated with an electron in a spherical atom. In this case, we assume that the current density is due to an electron in a bound atomic state with quantum numbers $\left|n l m_{l}\right\rangle$, as described by a wavefunction $\psi_{n l m_{l}}(\mathbf{r})$, where the azimuthal
quantum number m_{l} is associated with a factor of the form $\mathrm{e}^{i m_{l} \phi}$. For such a wavefunction the quantum mechanical current density operator can be evaluated:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar}{2 m_{e} i}\left(\psi_{n l m_{l}}^{*} \nabla \psi_{n l m_{l}}-\psi_{n l m_{l}} \nabla \psi_{n l m_{l}}^{*}\right) . \tag{8}
\end{equation*}
$$

Since the only complex part of this wavefunction is associated with the azimuthal quantum number, this can be written:

$$
\begin{equation*}
\mathbf{J}(\mathbf{r})=\frac{-e \hbar}{2 m_{e} i r \sin \theta}\left(\psi_{n l m_{l}}^{*} \frac{\partial}{\partial \phi} \psi_{n l m_{l}}-\psi_{n l m_{l}} \frac{\partial}{\partial \phi} \psi_{n l m_{l}}^{*}\right) \hat{\phi}=\frac{-e \hbar m_{l} \hat{\phi}}{m_{e} r \sin \theta}\left|\psi_{n l m_{l}}\right|^{2} . \tag{9}
\end{equation*}
$$

where m_{e} denotes the electron mass and e denotes the magnitude of the electron charge.
For example, consider the $|n l m=211\rangle$ state of a H atom:

$$
\begin{equation*}
\psi_{211}(\mathbf{r})=-\sqrt{\frac{1}{64 \pi a^{3}}} \frac{r}{a} \mathrm{e}^{-r /(2 a)} \sin \theta \mathrm{e}^{i \phi}, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{r}^{\prime}\right)=\frac{-e \hbar}{64 m_{e} \pi a^{5}} \mathrm{e}^{-r^{\prime} / a} \hat{\mathbf{z}} \times \mathbf{r}^{\prime} \tag{11}
\end{equation*}
$$

where a here denotes the Bohr radius. Using arguments similar to those above, we find that

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{-e \hbar \mu_{0} \hat{\mathbf{z}} \times \mathbf{r}}{192 m_{e} \pi a^{5} r} \int_{0}^{\infty} d r^{\prime} r^{\prime 3} \mathrm{e}^{-r^{\prime} / a} \frac{r_{<}}{r_{>}^{2}} . \tag{12}
\end{equation*}
$$

This expression can be integrated to give:

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{-e \hbar \mu_{0} \hat{\mathbf{z}} \times \mathbf{r}}{8 m_{e} \pi r^{3}}\left[1-\mathrm{e}^{-r / a}\left(1+\frac{r}{a}+\frac{r^{2}}{2 a^{2}}+\frac{r^{3}}{8 a^{3}}\right)\right] . \tag{13}
\end{equation*}
$$

