February 23, 2005

Notes for Lecture #16

Derivation of the hyperfine interaction
Magnetic dipole field

These notes are very similar to the notes on the electric dipole field.

The magnetic dipole moment is defined by
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The first terms come form evaluating V x A in Eq. 2. The last term of the field expression
follows from the following derivation. We note that Eq. (3) is poorly defined as r — 0, and
consider the value of a small integral of B(r) about zero. (For this purpose, we are supposing
that the dipole m is located at r = 0.) In this case we will approximate
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First we note that
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This result follows from the divergence theorm:
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In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of V x A
since VXA =%X(X-(VXA)+§(F - (VxA)+2z(z-(VxA)). Note that X- (V x A) =
—V - (X x A) and that we can use the Divergence theorem with V = % x A(r) for the x—
component for example:
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Therefore,
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which is identical to Eq. (5). We can use the identity (as in Lecture Notes 16),
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Now, expressing the vector potential in terms of the current density:
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the integral over €2 in Eq. 5 becomes
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If the sphere R contains the entire current distribution, then r~ = R and r. = r’ so that

(11) becomes
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which thus justifies the so-called “Fermi contact” term in Eq. 3.

Magnetic field due to electrons in the vicinity of a nucleus

In Lecturenotes #15, we showed that the current density associated with an electron in a
bound state of an atom as described by a quantum mechanical wavefunction ¢, (r) can be
written:
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In the following, it will be convenient to represent the azimuthal unit vector (5 in terms of

cartesian coordinates: R
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The vector potential for this current density can be written
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We want to evaluate the magnetic field B = V x A in the vicinity of the nucleus (r — 0).
Taking the curl of the Eq. 15, we obtain
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Evaluating this expression with (r — 0), we obtain
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Expanding the cross product and expressing the result in spherical polar coordinates, we

obtain in the numerator # x (zZ x ') = Z(1—cos? §') —X cos §’ sin ¢’ cos ¢/ —§ cos ¢’ sin 0’ sin ¢').

In evaluating the integration over the azimuthal variable ¢’, the X and ¥ components vanish
which reduces to
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