March 16, 2005

Notes for Lecture #23

Derivation of the Lienard-Wiechert potentials and fields

Consider a point charge ¢ moving on a trajectory R,(t). We can write its charge density as

p(r,t) = q6°(r — Ry(1)), (1)
and the current density as _
J(r,t) = qRy(1)0°(r — Ry (1)), (2)
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Evaluating the scalar and vector potentials in the Lorentz gauge,
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We performing the integrations over first d®r’ and then dt’, and make use of the fact that
for any function of ¢,
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where the “retarded time” is defined to be
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where we have used the shorthand notation R = r — Rg(t,) and v = R,(t,).
In order to find the electric and magnetic fields, we need to evaluate
OA(r,t
E(r,t) = -Va&(r,t) — (x,) (10)
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and

B(r,t) =V x A(r,t). (11)

The trick of evaluating these derivatives is that the retarded time (7) depends on position r
and on itself. We can show the following results using the shorthand notation defined above:

R
e Tt (12)
and ot R
e () (13)

Evaluating the gradient of the scalar potential, we find:
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These results can be combined to determine the electric field:

E(r,t) = 4:60 T —1V;R)3 [(R— "f) (1 - Zj) 4 (R x {(R— "R) x V})] . (16)
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We can also evaluate the curl of A to find the magnetic field:
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One can show that the electric and magnetic fields are related according to

B(r,t) = 1
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B(r,t) = RXCER(I”’”. (18)



