April 4, 2005
Notes for Lecture #27

Electromagnetic wave guides

In order to understand the operation of a wave guide, we must first learn how electromagnetic
waves behave in a dissipative medium. A plane wave solution to Maxwell’s equations of the
form:
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for the electric and magnetic fields, with the wave vector £ satisfying the relation:
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We can determine the complex wavevector k,. + ik; according to
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The form of the frequency dependent constants R and Z depend on the materials. For the
Drude model at low frequency (Eq. 7.56), R = w?ue, and Z = wpo, for example. The
value of k; determines the rate of decay of the field amplitudes in the vicinity of the surface,
with the skin depth given by § = 1/k;. In the limit that Z > R, as in the case of a good

conductor at low frequency, 6 ~ (2/(wpo))"/?.

For an ”ideal” conductor Z — oo, so that the fields are confined to the surface. Because of
the field continuity conditions at the surface of the conductor, this means that, Biangential 7 0
(because there can be a surface current), E,oma 7 0 (because there can be a surface charge),
but Bnormal =0 and Etangential = 0.

Suppose we construct a wave guide from an ”ideal” conductor, designating Z as the propa-
gation direction. We will assume that the fields take the form:
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inside the pipe, where now k and ¢ are assumed to be real. Assuming that there are no sources
inside the pipe, the fields there must satisfy Maxwell’s equations (8.16) which expand to the
following :
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Combining Faraday’s Law and Ampere’s Law, we find that each field component must satisfy
a two-dimensional Helmholz equation:
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with similar expressions for each of the other field components. For the rectangular wave
guide discussed in Section 8.4 of your text a solution for a TE mode can have:

E.(x,y)=0 and B,(x,y) = Bycos (mmc) cos <n7bry> , (14)
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can determine the other field components. For example Egs. (7-8) simplify to
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with &% = k7, = pew ( ) + . From this result and Maxwell’s equations, we
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These results can be used in Eqgs. (10-11) to solve for the fields £, and E, and B, and B
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One can check this result to show that these results satisfy the boundary conditions. For

example, Eqangential = 0 is satisfied since E,(x,0) = E;(x,b) = 0 and E,(0,y) = E,(a,y) = 0.

This was made possible choosing VB, |surface't = 0, where fi denotes a unit normal vector

pointing out of the wave guide surface.



