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Notes for Lecture #3

Form of Green’s function solutions to the Poisson equation

According to Eq. 1.35 of your text for any two three-dimensional functions φ(r) and ψ(r),∫
Vol

(
φ(r)∇2ψ(r)− ψ(r)∇2φ(r)

)
d3r =

∮
Surf

(φ(r)∇ψ(r)− ψ(r)∇φ(r)) · r̂d2r, (1)

where r̂ denotes a unit vector normal to the integration surface. We can choose to evaluate
this expression with φ(r) = Φ(r) (the electrostatic potential) and ψ(r) = G(r, r′), and also
make use of the identities:

∇2Φ(r) = −ρ(r)
ε0

(2)

and
∇2G(r, r′) = −4πδ(r− r′). (3)

Then, the Green’s identity (1) becomes

−4π
∫
Vol

(
Φ(r)δ(r− r′)−G(r, r′)

ρ(r)

4πε0

)
d3r =

∮
Surf

{Φ(r)∇G(r, r′)−G(r, r′)∇Φ(r)} · r̂d2r.

(4)

This expression can be further evaluated. If the arbitrary position, r′ is included in the
integration volume, then the equation (4) becomes

Φ(r′) =
∫
Vol
G(r, r′)

ρ(r)

4πε0

d3r +
1

4π

∮
Surf

{G(r, r′)∇Φ(r)− Φ(r)∇G(r, r′)} · r̂d2r. (5)

This expression is the same as Eq. 1.42 of your text if we switch the variables r′ ⇔ r and
also use the fact that Green’s function is symmetric in its arguments: G(r, r′) ≡ G(r′, r).

Mean value theorem for solutions to the Laplace equation

Consider an electrostatic field Φ(r) in a charge-free region so that it satisfies the Laplace
equation:

∇2Φ(r) = 0. (6)

The “mean value theorem” value theorem (problem 1.10 of your textbook) states that the
value of Φ(r) at the arbitrary (charge-free) point r is equal to the average of Φ(r′) over the



surface of any sphere centered on the point r (see Jackson problem #1.10). One way to
prove this theorem is the following. Consider a point r′ = r + u, where u will describe a
sphere of radius R about the fixed point r. We can make a Taylor series expansion of the
electrostatic potential Φ(r′) about the fixed point r:

Φ(r + u) = Φ(r) + u · ∇Φ(r) +
1

2!
(u · ∇)2Φ(r) +

1

3!
(u · ∇)3Φ(r) +

1

4!
(u · ∇)4Φ(r) + · · · . (7)

According to the premise of the theorem, we want to integrate both sides of the equation 7
over a sphere of radius R in the variable u:∫

sphere
dSu = R2

∫ 2π

0
dφu

∫ +1

−1
d cos(θu). (8)

We note that

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)1 = 4πR2, (9)

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)u · ∇ = 0, (10)

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)(u · ∇)2 =

4πR4

3
∇2, (11)

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)(u · ∇)3 = 0, (12)

and

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)(u · ∇)4 =

4πR6

5
∇4. (13)

Since ∇2Φ(r) = 0, the only non-zero term of the average it thus the first term:

R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)Φ(r + u) = 4πR2Φ(r), (14)

or

Φ(r) =
1

4πR2
R2
∫ 2π

0
dφu

∫ +1

−1
d cos(θu)Φ(r + u). (15)

Since this result is independent of the radius R, we see that we have proven the theorem.


