Notes for Lecture \#36

Synchrotron Radiation

For this analysis we will use the geometry shown in Fig. 14.9 of Jackson. A particle with charge q is moving in a circular trajectory with radius ρ and speed v. Its trajectory as a function of time t is given by

$$
\begin{equation*}
\mathbf{r}_{q}(t)=\rho \sin (v t / \rho) \hat{\mathbf{x}}+\rho(1-\cos (v t / \rho)) \hat{\mathbf{y}} . \tag{1}
\end{equation*}
$$

Its velocity as a function time is given by

$$
\begin{equation*}
\mathbf{v}_{q}(t)=v \cos (v t / \rho) \hat{\mathbf{x}}+v \sin (v t / \rho) \hat{\mathbf{y}} . \tag{2}
\end{equation*}
$$

The spectral intensity that we must evaluate is given by the expression (Eq. 14.67 in Jackson)

$$
\begin{equation*}
\frac{d^{2} I}{d \omega d \Omega}=\frac{q^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \beta) \mathrm{e}^{i \omega\left(t-\hat{\mathbf{r}} \cdot \mathbf{r}_{q}(t) / c\right)} d t\right|^{2} \tag{3}
\end{equation*}
$$

After some algebra, this expression can be put into the form

$$
\begin{equation*}
\frac{d^{2} I}{d \omega d \Omega}=\frac{q^{2} \omega^{2} \beta^{2}}{4 \pi^{2} c}\left\{\left|C_{\|}(\omega)\right|^{2}+\left|C_{\perp}(\omega)\right|^{2}\right\} \tag{4}
\end{equation*}
$$

where the amplitude for the light polarized along the y-axis is given by

$$
\begin{equation*}
C_{\|}(\omega)=\int_{-\infty}^{\infty} d t \sin (v t / \rho) \mathrm{e}^{i \omega\left(t-\frac{\rho}{c} \cos \theta \sin (v t / \rho)\right)} \tag{5}
\end{equation*}
$$

and the amplitude for the light polarized perpendicular to $\hat{\mathbf{y}}$ and $\hat{\mathbf{r}}$ is given by

$$
\begin{equation*}
C_{\perp}(\omega) \int_{-\infty}^{\infty} d t \sin \theta \cos (v t / \rho) \mathrm{e}^{i \omega\left(t-\frac{\rho}{c} \cos \theta \sin (v t / \rho)\right)} . \tag{6}
\end{equation*}
$$

We will analyze this expression for two different cases. The first case, is appropriate for man-made synchrotrons used as light sources. In this case, the light is produced by short bursts of electrons moving close to the speed of light $\left(v \approx c\left(1-1 /\left(2 \gamma^{2}\right)\right)\right.$ passing a beam line port. In addition $\theta \approx 0$ and the relevant integration times t are close to $t \approx 0$. This results in the form shown in Eq. 14.79 of your text. It is convenient to rewrite this form in terms of a critical frequency

$$
\begin{equation*}
\omega_{c} \equiv \frac{3 c \gamma^{3}}{2 \rho} . \tag{7}
\end{equation*}
$$

The resultant intensity is then given by

$$
\begin{equation*}
\frac{d^{2} I}{d \omega d \Omega}=\frac{3 q^{2} \gamma^{2}}{4 \pi^{2} c}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left\{\left[K_{2 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}}\left[K_{1 / 3}\left(\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \theta^{2}\right)^{\frac{3}{2}}\right)\right]^{2}\right\} . \tag{8}
\end{equation*}
$$

By plotting this expression as a function of ω, we see that the intensity is largest near $\omega \approx \omega_{c}$.
The second example of synchroton radiation comes from a distant charged particle moving in a circular trajectory such that the spectrum represents a superposition of light generated over many complete circles. In this case, there is an interference effect which results in the spectrum consisting of discrete multiples of v / ρ. For this case we need to reconsider Eqs. 5 and 6 . There is a very convenient Bessel function identity of the form:

$$
\begin{equation*}
\mathrm{e}^{-i a \sin \alpha}=\sum_{m=-\infty}^{\infty} J_{m}(a) \mathrm{e}^{-i m \alpha} . \tag{9}
\end{equation*}
$$

Here $J_{m}(a)$ is a Bessel function of integer order m. In our case $a=\frac{\omega \rho}{c} \cos \theta$ and $\alpha=\frac{v t}{\rho}$. Analyzing the "parallel" component we have

$$
\begin{equation*}
C_{\|}=\frac{c}{-i \omega \rho} \frac{\partial}{\partial \cos \theta} \int_{-\infty}^{\infty} d t \mathrm{e}^{i \omega\left(t-\frac{\rho}{c} \cos \theta \sin (v t / \rho)\right)}=\frac{c}{-i \omega \rho} \frac{\partial}{\partial \cos \theta} \sum_{-\infty}^{\infty} J_{m}\left(\frac{\omega \rho}{c} \cos \theta\right) 2 \pi \delta\left(\omega-m \frac{v}{\rho}\right) . \tag{10}
\end{equation*}
$$

In determining this result, we have used the identity

$$
\begin{equation*}
\int_{-\infty}^{\infty} d t \mathrm{e}^{i\left(\omega-m \frac{v}{\rho}\right) t}=2 \pi \delta\left(\omega-m \frac{v}{\rho}\right) . \tag{11}
\end{equation*}
$$

Eq. 10 can be simplified to show that

$$
\begin{equation*}
C_{\|}=2 \pi i \sum_{-\infty}^{\infty} J_{m}^{\prime}\left(\frac{\omega \rho}{c} \cos \theta\right) \delta\left(\omega-m \frac{v}{\rho}\right) \tag{12}
\end{equation*}
$$

where $J_{m}^{\prime}(a) \equiv \frac{d J_{m}(a)}{d a}$. The "perpendicular" component can be analyzed in a similar way, using integration by parts to eliminate the extra $\cos (v t / \rho)$ term in the argument. The result is

$$
\begin{equation*}
C_{\perp}=2 \pi \frac{\tan \theta}{v / c} \sum_{-\infty}^{\infty} J_{m}\left(\frac{\omega \rho}{c} \cos \theta\right) \delta\left(\omega-m \frac{v}{\rho}\right) . \tag{13}
\end{equation*}
$$

In both of these expressions, the sum over m includes both negative and positive values of m. However, only the positive values of ω and therefore positive values of m are of interest, and if we needed to use the negative m values, we could use the identity

$$
\begin{equation*}
J_{-m}(a)=(-1)^{m} J_{m}(a) \tag{14}
\end{equation*}
$$

Combining these results, we find that the intensity spectrum for this case consists of a series of discrete frequencies which are multiples of v / ρ.

$$
\begin{equation*}
\frac{d^{2} I}{d \omega d \Omega}=\frac{q^{2} \omega^{2} \beta^{2}}{c} \sum_{m=0}^{\infty} \delta\left(\omega-m \frac{v}{\rho}\right)\left\{\left[J_{m}^{\prime}\left(\frac{\omega \rho}{c} \cos \theta\right)\right]^{2}+\frac{\tan ^{2} \theta}{v^{2} / c^{2}}\left[J_{m}\left(\frac{\omega \rho}{c} \cos \theta\right)\right]^{2}\right\} \tag{15}
\end{equation*}
$$

These results were derived by Julian Schwinger (Phys. Rev. 75, 1912-1925 (1949)). The discrete case is similar to the result quoted in Problem 14.15 in Jackson's text. It should have some implications for Astronomical observations, but I have not yet found any references for that.

