January 29, 2005

Notes for Lectures #8 & 9

Methods for solving Poisson equation
There are are large number of tools for solving the Poisson and Laplace equations:

1. Green’s function methods:
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2. Complete function expansions; Fourier series, etc.
3. Variational methods

4. Grid based methods
Introduction to grid-based methods

The basis for most grid-based methods is the Taylor’s expansion:
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We will work out some explicit formulae for a 2-dimensional regular grid with /& denoting
the step length. For the 2-dimensional Poisson equation we have
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We note that a sum of 4 surrounding edge values gives:
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Similarly, a sum of 4 surrounding corner values gives:
Sp=  ®@+hy+h)+P(x—hy+h)+P(x+hy—h)+P(x—hy—h) (5)
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Figure 1: 3 x 3 grid for solution of the Poisson equation within a 2-dimensional square.

We note that we can combine these two results into the relation

This result can be written in the form;

3h? (z.9) + h*
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In general, the right hand side of this equation is known, and most of the left hand side of
the equation, except for the boundary values are unknown. It can be used to develop a set
of linear equations for the values of ®(z,y) on the grid points.
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For example, consider a solution to the Laplace equation in the square region 0 < x < a,
0 <y < a which ®(z,0) = ®(0,y) = ®(a,y) = 0 and ®(z,a) = Vj. We will first analyze

this system with a mesh of 9 points. In this case, ¢5 = ®(§, ) is unknown, while ¢; = ¢, =
o3 =1 and ¢4 = ¢ = ¢7 = g = g = 0. For this example, Eq. 7 states
1 1 3
¢5=—(¢2+¢4+¢6+¢8)+—(¢1+¢3+¢7+¢9)=—V6 (8)
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This results is within 20% of the exact answer of ®(g,5) = 0.25V4. If analyze this same
system with the next more accurate grid, using the symmetry of the system ®(z,y) =
®(a — z,y), we have now 6 unknown values {ds, ¢s, s, P9, P11, P12} and boundary values

¢1=¢2=¢3=1and ¢, = ¢7 = ¢p10 = P13 = ¢1a = P15 = 0.
This results in the following relations between the grid points:
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Figure 2: 5 x 5 grid for solution of the Poisson equation within a 2-dimensional square.

Bo = 2 (85 + b5+ b5+ du) — 50 (Ba+ b2 + by + ) = (10)
s = 2 (65 + 6160+ 6u1) — 55 (61 + b + B0 + 612) = 0, (1)
o = = (65 dn + by fuz) — o065 s + 6+ 6m) =0, (12)
b11 = £ (5 buo+ b1a -+ 610) — 5501+ bo + dua + 615) =0, (13)
b12 = 2 (B0 + b1 + bu1 + dus) — 55 (G5 + G+ dua+ 610) =0, (19

These equations can be cast into the form of a matrix problem which can be easily solved
using Maple:

1 —-1/5 —1/5 —1/20 0 0 s 3/10
—2/5 1 —1/10 —1/5 0 0 b6 3/10
~1/5 -1/20 1  —1/5 —1/5 —1/20 o | _| 0 W )
~1/10 -1/5 -2/5 1 —1/10 —-1/5 do 0

0 0o -1/5 -1/20 1  -1/5 b1 0

0 0 -1/10 -1/5 -=2/5 1 b1 0




The solution to these equations and the exact results are found to be:

o5 0.4628135839 14320283318
o6 0.5566467694 .5405292183
o 0.1920222635 .1820283318
= Vo; (exact) = Vo. (16)
09 0.2615955473 0.25
o1 0.07150923611 06797166807
012 0.1001250302 .09541411792

We see that the accuracy has improved considerably with the new mesh.
Introduction to Finite element method

The finite element approach is based on an expansion of the unknown electrostatic potential
in terms of known grid-based functions of fixed shape. In two dimensions, using the indices
{i,7} to reference the grid, we can denote the shape functions as {¢;;(z,y)}. The finite
element expansion of the potential in two dimensions can take the form:

471'80@(33,3/) = Zwij@'j(%y), (17)
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where 1;; represents the amplitude associated with the shape function ¢;;(z,y). The ampli-
tude values can be determined for a given solution of the Poisson equation:

~V? (4meo®(2,y)) = 4mp(z,y), (18)
by solving a linear algebra problem of the form

> My ibi; = G, (19)
i

where
My = /dx/dngszl(ac,y) -Voij(z,y) and Gy = /dm/dy¢kl(x,y) drp(z,y). (20)

In obtaining this result, we have assumed that the boundary values vanish. In order for this
result to be useful, we need to be able evaluate the integrals for My;;; and for Gy;. In the
latter case, we need to know the form of the charge density. The form of My, ;; only depends
upon the form of the shape functions. If we take these functions to be:

dij(z,y) = Xi(2)Y;(y), (21)

where

X;(z) = D 22
(%) 0 otherwise (22)
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and Y;(y) has a similar expression in the variable y. Then
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There are four types of non-trivial contributions to these values:
z;+h 1 2h
[ @@ de=h [ (1= ful)du= T, (24)
z;—h -1 3
z;+h h
/ (%X (z) m()dx_h/ 1—uudu_E (25)
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These basic ingredients lead to the following distinct values for the matrix:
g fork=7and [l =j
My =4 —3 fork—i=+1and/orl—j=+1 . (28)
0  otherwise

For problems in which the boundary values are 0, Eq. 19 then can be used to find all of the
interior amplitudes v;;.

In order to use this technique to solve the boundary value problem discussed above, we have
to make one modification. The boundary value of ®(z,a) = V} is not consistent with the
derivation of Eq. (20), however, since we are only interested in the region 0 < y < a, we can
extend our numerical analysis to the region 0 < y < a + h and require ®(z,a + h) = 0 in
addition to ®(z,a) = Vj. Using the same indexing as in Fig. 2, this means that ¢ = 1y =
13 = V. The finite element approach for this problem thus can be put into the matrix form
for analysis by Maple:
8/3 -1/3 —-1/3 —-1/3 0 0 Us
-2/3 8/3 —=2/3 —-1/3 0 0 Vg
-1/3 -1/3 8/3 -1/3 —-1/3 —-1/3 (8
-2/3 -1/3 -2/3 8/3 -2/3 —1/3 Yy
0 o -1/3 -1/3 8/3 —-1/3 Y11
0 0o -2/3 -1/3 —-2/3 8/3 Y19

Vo. (29)
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The solution to these equations and the exact results are found to be:

Ps
Ve
Vs
Yo
Y
P12

0.5070276498
5847926267
0.1928571429
0.2785714286
0.07154377880
0.1009216590

Vo;  (exact)

06797166807
.09541411792

4320283318
.5405292183
1820283318

0.25

Vo.

(30)

We see that the results are similar to those obtained using the finite difference approach.



