April 5, 2006
Notes on numerical solutions of Schrodinger equation

Consider the following one-dimensional Schrédinger equation:
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where V(z) is a given potential function, and F,, is the energy eigenvalue associated with
the eigenfunction 1, (z). This can either represent a bound state or a continuum state. One
basic approach to developing accurate numerical approximations to the solution of these
equations is to use a Taylor’s series expansion to relate the behavior of % to i, (2') for
points z’ in the neighborhood of x. Note that for any small distance s,
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This means that if s is small, we can approximate the second derivative according to
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This central difference approximation can be used to solve both bound state and scattering
state solutions of the Schrodinger equation 1. For an an example suppose the we have a
bound state problem with the boundary conditions v,,(0) = ¥,(X) = 0 We then divide the
interval 0 < x < X into N intervals with X = (N + 1)s.

Then we can use Eq. (3) to replace the kinetic energy operator. The Schrodinger Equation
then takes the form of a tri-diagonal eigenvalue problem:
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The diagonal elements are b; = 2 + s2[2mV (is)/h*] and the off-diagonal elements are a; =
¢; = —1. Here it is assumed that X is divided into N intervals with X = (N + 1)s. v,
represents a vector of N coefficients {¢,(is)}, with i = 1,2,3...N. The energy eigenvalues
are given by \, = s2[2mFE, /h*]. One can show that the error of this numerical procedure is

of order O(s*™(x)).



By keeping the next even term in the Taylor series expansion, one can derive a Numerov
algorithm for this problem which takes the form:

Mwv,, = N\, Sv,. (6)

Here M is a tridiagonal matrix having the same form as above, and S is a positive definite
tridiagonal matrix having the form:
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In this expression, 3; = 10/12 and o; = v, = 1/12, while b; = 2 + ig s2[2mV (is) /h?),
a; = =1+ L22mV((i — 1)s)/h%], and ¢; = —1 + Ls22mV((i + 1) )/h?]. One can show

that the error of this numerical procedure is of order O(s%)V(z)).
For the case of a spherical atom, the wavefunction is assumed to take the form
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where the radial function p,;(r) is determined by solving the radial Schodinger equation,
which (dropping the nl indices can be written:
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Rather than solving the equation in matrix form as described above, it is generally found to
be more efficient to solve for each eigenvalue E iteratively, using the Numerov algorithm to
integrate inward and outward and matching at an intermediate point r,,. For this purpose,
we can denote P; = P(is). The recursion formula is given by
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For any given energy iteration, the correction to the energy eigenvalue can be estimated from

the mismatch in the slope at the matching point:
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