Notes for Lecture #1

1 Introduction

1. Textbook and course structure
2. Motivation
3. Chapters I and 1 and Appendix of Jackson
 (a) Units - SI vs Gaussian
 (b) Laplace and Poisson Equations
 (c) Green’s Theorm

2 Units - SI vs Gaussian

Coulomb’s law has the form:
\[F = K_C \frac{q_1 q_2}{r_{12}^2}. \] \((1) \)

Ampere’s law has the form:
\[F = K_A \frac{i_1 i_2}{r_{12}^2} \frac{ds_1 \times ds_2 \times \hat{r}_{12}}{r_{12}^2}, \] \((2) \)

where the current and charge are related by \(i_1 = dq_1/dt \) for all unit systems. The two constants \(K_C \) and \(K_A \) are related so that their ratio \(K_C/K_A \) has the units of \((m/s)^2\) and it is experimentally known that in both the SI and CGS (Gaussian) unit systems, it has the value \(K_C/K_A = c^2 \), where \(c \) is the speed of light.

The choices for these constants in the SI and Gaussian units are given below:

<table>
<thead>
<tr>
<th></th>
<th>CGS (Gaussian)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_C)</td>
<td>1</td>
<td>(\frac{1}{4\pi\epsilon_0})</td>
</tr>
<tr>
<td>(K_A)</td>
<td>(\frac{1}{\mu_0 c^2})</td>
<td>(\frac{\mu_0}{4\pi})</td>
</tr>
</tbody>
</table>

Here, \(\frac{\mu_0}{4\pi} \equiv 10^{-7}N/A^2 \) and \(\frac{1}{4\pi\epsilon_0} = c^2 \cdot 10^{-7}N/A^2 = 8.98755 \times 10^9 N \cdot m^2/C^2 \).
Below is a table comparing SI and Gaussian unit systems. The fundamental units for each system are so labeled and are used to define the derived units.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SI</th>
<th>Gaussian</th>
<th>SI/Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>Relation</td>
<td>Unit</td>
</tr>
<tr>
<td>length</td>
<td>m</td>
<td>fundamental</td>
<td>cm</td>
</tr>
<tr>
<td>mass</td>
<td>kg</td>
<td>fundamental</td>
<td>gm</td>
</tr>
<tr>
<td>time</td>
<td>s</td>
<td>fundamental</td>
<td>s</td>
</tr>
<tr>
<td>force</td>
<td>N</td>
<td>kg \cdot m^2/s</td>
<td>dyne</td>
</tr>
<tr>
<td>current</td>
<td>A</td>
<td>fundamental</td>
<td>statampere</td>
</tr>
<tr>
<td>charge</td>
<td>C</td>
<td>A \cdot s</td>
<td>statcoulomb</td>
</tr>
</tbody>
</table>

One advantage of the Gaussian system is that all of the field vectors: \(\mathbf{E}, \mathbf{D}, \mathbf{B}, \mathbf{H}, \mathbf{P}, \mathbf{M} \) have the same dimensions, and in vacuum, \(\mathbf{B} = \mathbf{H} \) and \(\mathbf{E} = \mathbf{D} \) and the dielectric and permittivity constants \(\epsilon \) and \(\mu \) are unitless.

<table>
<thead>
<tr>
<th>CGS (Gaussian)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nabla \cdot \mathbf{D} = 4\pi \rho)</td>
<td>(\nabla \cdot \mathbf{D} = \rho)</td>
</tr>
<tr>
<td>(\nabla \cdot \mathbf{B} = 0)</td>
<td>(\nabla \cdot \mathbf{B} = 0)</td>
</tr>
<tr>
<td>(\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t})</td>
<td>(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t})</td>
</tr>
<tr>
<td>(\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t})</td>
<td>(\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t})</td>
</tr>
<tr>
<td>(\mathbf{F} = q(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}))</td>
<td>(\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}))</td>
</tr>
<tr>
<td>(u = \frac{1}{8\pi} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}))</td>
<td>(u = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H}))</td>
</tr>
<tr>
<td>(\mathbf{S} = \frac{c}{4\pi} (\mathbf{E} \times \mathbf{H}))</td>
<td>(\mathbf{S} = (\mathbf{E} \times \mathbf{H}))</td>
</tr>
</tbody>
</table>

“Proof” of the identity (Eq. (1.31))

\[
\nabla^2 \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) = -4\pi \delta^3(\mathbf{r} - \mathbf{r}').
\] (3)
Noting that
\[\int_{\text{small sphere about } r'} d^3r \, \delta^3(r - r') f(r) = f(r'), \quad (4) \]
we see that we must show that
\[\int_{\text{small sphere about } r'} d^3r \, \nabla^2 \left(\frac{1}{|r - r'|} \right) f(r) = -4\pi f(r'). \quad (5) \]

We introduce a small radius \(a \) such that:
\[\frac{1}{|r - r'|} = \lim_{a \to 0} \frac{1}{\sqrt{|r - r'|^2 + a^2}}. \quad (6) \]

For a fixed value of \(a \),
\[\nabla^2 \frac{1}{\sqrt{|r - r'|^2 + a^2}} = \frac{-3a^2}{(|r - r'|^2 + a^2)^{5/2}}. \quad (7) \]

If the function \(f(r) \) is continuous, we can make a Taylor expansion of it about the point \(r = r' \), keeping only the first term. The integral over the small sphere about \(r' \) can be carried out analytically, by changing to a coordinate system centered at \(r' \):
\[u = r - r', \quad (8) \]
so that
\[\int_{\text{small sphere about } r'} d^3r \, \nabla^2 \left(\frac{1}{|r - r'|} \right) f(r) \approx f(r') \lim_{a \to 0} \int_{u < R} d^3u \frac{-3a^2}{(u^2 + a^2)^{5/2}}. \quad (9) \]

We note that
\[\int_{u < R} d^3u \frac{-3a^2}{(u^2 + a^2)^{5/2}} = 4\pi \int_0^R du \frac{-3a^2u^2}{(u^2 + a^2)^{5/2}} = 4\pi \frac{-R^3}{(R^2 + a^2)^{3/2}}. \quad (10) \]

If the infinitesimal value \(a \) is \(a \ll R \), then \((R^2 + a^2)^{3/2} \approx R^3 \) and the right hand side of Eq. 10 is \(-4\pi\). Therefore, Eq. 9 becomes,
\[\int_{\text{small sphere about } r'} d^3r \, \nabla^2 \left(\frac{1}{|r - r'|} \right) f(r) \approx f(r')(-4\pi), \quad (11) \]
which is consistent with Eq. 5.