February 14, 2006

Notes for Lecture #15

Derivation of the hyperfine interaction
Magnetic dipole field

These notes are very similar to the notes on the electric dipole field.

The magnetic dipole moment is defined by
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with the corresponding potential
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The first terms come form evaluating V x A in Eq. 2. The last term of the field expression
follows from the following derivation. We note that Eq. (3) is poorly defined as r — 0, and
consider the value of a small integral of B(r) about zero. (For this purpose, we are supposing
that the dipole m is located at r = 0.) In this case we will approximate

B(r ~ 0) ~ ( / . B(r)d3r) 53(x). (4)

First we note that
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This result follows from the divergence theorm:
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In our case, this theorem can be used to prove Eq. (5) for each cartesian coordinate of V x A
smcerA—X( (VXA))+3F-(VxA)+2(z-(VxA)). Note that X - (V x A) =



—V - (% x A) and that we can use the Divergence theorem with ¥V = % x A(r) for the x—
component for example:
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Therefore,
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which is identical to Eq. (5). We can use the identity (as in Lecture Notes 14),
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Now, expressing the vector potential in terms of the current density:
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the integral over 2 in Eq. 5 becomes

R2/ (F x A)dQ = —/d3r’ "< o 3. (11)
r=R 3 4rm r2

If the sphere R contains the entire current distribution, then r~ = R and r- = r’ so that

(11) becomes
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which thus justifies the delta-function contribution in Eq. 3 and results so-called “Fermi

contact” contribution in the “hyperfine” interaction.
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Magnetic field due to electrons in the vicinity of a nucleus

In Lecture Notes #14, we showed that the current density associated with an electron in a
bound state of an atom as described by a quantum mechanical wavefunction ¢, (r) can be
written:
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In the following, it will be convenient to represent the azimuthal unit vector ¢ in terms of

cartesian coordinates: R
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The vector potential for this current density can be written
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We want to evaluate the magnetic field B = V x A in the vicinity of the nucleus (r — 0).
Taking the curl of the Eq. 15, we obtain
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Evaluating this expression with (r — 0), we obtain
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Expanding the cross product and expressing the result in spherical polar coordinates, we
obtain in the numerator # x (zZ x ') = Z(1—cos? §') —X cos §’ sin ¢’ cos ¢/ —§ cos ¢’ sin 0’ sin ¢').

In evaluating the integration over the azimuthal variable ¢’, the X and ¥ components vanish
which reduces to
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“Hyperfine” interaction

The so-called “hyperfine” interaction results from the magnetic dipole moment of a nucleus
un responding to the magnetic field formed by the magnetic dipole of the electron spin (fie)
as well as the electron orbital current contribution.
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