Notes for Lecture \#19

Derivation of the Lienard-Wiechert potentials and fields

Consider a point charge q moving on a trajectory $R_{q}(t)$. We can write its charge density as

$$
\begin{equation*}
\rho(\mathbf{r}, t)=q \delta^{3}\left(\mathbf{r}-\mathbf{R}_{q}(t)\right) \tag{1}
\end{equation*}
$$

and the current density as

$$
\begin{equation*}
\mathbf{J}(\mathbf{r}, t)=q \dot{\mathbf{R}}_{q}(t) \delta^{3}\left(\mathbf{r}-\mathbf{R}_{q}(t)\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\mathbf{R}}_{q}(t) \equiv \frac{d \mathbf{R}_{q}(t)}{d t} \tag{3}
\end{equation*}
$$

Evaluating the scalar and vector potentials in the Lorentz gauge,

$$
\begin{equation*}
\Phi(\mathbf{r}, t)=\frac{1}{4 \pi \epsilon_{0}} \iint d^{3} r^{\prime} d t^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \delta\left(t^{\prime}-\left(t-\left|\mathbf{r}-\mathbf{r}^{\prime}\right| / c\right)\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}(\mathbf{r}, t)=\frac{1}{4 \pi \epsilon_{0} c^{2}} \iint d^{3} r^{\prime} d t^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \delta\left(t^{\prime}-\left(t-\left|\mathbf{r}-\mathbf{r}^{\prime}\right| / c\right)\right) \tag{5}
\end{equation*}
$$

We performing the integrations over first $d^{3} r^{\prime}$ and then $d t^{\prime}$, and make use of the fact that for any function of t^{\prime},

$$
\begin{equation*}
\int_{-\infty}^{\infty} d t^{\prime} f\left(t^{\prime}\right) \delta\left(t^{\prime}-\left(t-\left|\mathbf{r}-\mathbf{R}_{q}\left(t^{\prime}\right)\right| / c\right)\right)=\frac{f\left(t_{r}\right)}{1-\frac{\dot{\mathbf{R}}_{q}\left(t_{r}\right) \cdot\left(\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)\right)}{c\left|\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)\right|}}, \tag{6}
\end{equation*}
$$

where the "retarded time" is defined to be

$$
\begin{equation*}
t_{r} \equiv t-\frac{\left|\mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)\right|}{c} . \tag{7}
\end{equation*}
$$

We find

$$
\begin{equation*}
\Phi(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}}, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0} c^{2}} \frac{\mathbf{v}}{R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}} \tag{9}
\end{equation*}
$$

where we have used the shorthand notation $\mathbf{R} \equiv \mathbf{r}-\mathbf{R}_{q}\left(t_{r}\right)$ and $\mathbf{v} \equiv \dot{\mathbf{R}}_{q}\left(t_{r}\right)$.
In order to find the electric and magnetic fields, we need to evaluate

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=-\nabla \Phi(\mathbf{r}, t)-\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}, t)=\nabla \times \mathbf{A}(\mathbf{r}, t) . \tag{11}
\end{equation*}
$$

The trick of evaluating these derivatives is that the retarded time (7) depends on position \mathbf{r} and on itself. We can show the following results using the shorthand notation defined above:

$$
\begin{equation*}
\nabla t_{r}=-\frac{\mathbf{R}}{c\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)}, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial t_{r}}{\partial t}=\frac{R}{\left(R-\frac{\mathrm{v} \cdot \mathbf{R}}{c}\right)} . \tag{13}
\end{equation*}
$$

Evaluating the gradient of the scalar potential, we find:

$$
\begin{equation*}
-\nabla \Phi(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left[\mathbf{R}\left(1-\frac{v^{2}}{c^{2}}\right)-\frac{\mathbf{v}}{c}\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)+\mathbf{R} \frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^{2}}\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\partial \mathbf{A}(\mathbf{r}, t)}{\partial t}=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left[\frac{\mathbf{v} R}{c}\left(\frac{v^{2}}{c^{2}}-\frac{\mathbf{v} \cdot \mathbf{R}}{R c}-\frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^{2}}\right)-\frac{\dot{\mathbf{v}} R}{c^{2}}\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)\right] . \tag{15}
\end{equation*}
$$

These results can be combined to determine the electric field:

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left[\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right)\left(1-\frac{v^{2}}{c^{2}}\right)+\left(\mathbf{R} \times\left\{\left(\mathbf{R}-\frac{\mathbf{v} R}{c}\right) \times \frac{\dot{\mathbf{v}}}{c^{2}}\right\}\right)\right] . \tag{16}
\end{equation*}
$$

We can also evaluate the curl of \mathbf{A} to find the magnetic field:

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}, t)=\frac{q}{4 \pi \epsilon_{0} c^{2}}\left[\frac{-\mathbf{R} \times \mathbf{v}}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{3}}\left(1-\frac{v^{2}}{c^{2}}+\frac{\dot{\mathbf{v}} \cdot \mathbf{R}}{c^{2}}\right)-\frac{\mathbf{R} \times \dot{\mathbf{v}} / c}{\left(R-\frac{\mathbf{v} \cdot \mathbf{R}}{c}\right)^{2}}\right] . \tag{17}
\end{equation*}
$$

One can show that the electric and magnetic fields are related according to

$$
\begin{equation*}
\mathbf{B}(\mathbf{r}, t)=\frac{\mathbf{R} \times \mathbf{E}(\mathbf{r}, t)}{c R} . \tag{18}
\end{equation*}
$$

