PHY 712 - Problem Set \#5

Consider a three-dimensional charge distribution of the form:

$$
\rho(\mathbf{r})=\frac{q}{\pi^{3 / 2} a^{3}} \mathrm{e}^{-(r / a)^{2}}
$$

where q and a are constants.

1. Show that the electrostatic potential $\Phi(\mathbf{r})$, as a function of the distance \mathbf{r} from the center of the charge distribution $\rho(\mathbf{r})$ is given by

$$
\Phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int d^{3} r^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{q}{4 \pi \epsilon_{0}} \frac{\operatorname{erf}(r / a)}{r} .
$$

2. Now suppose that a grounded metal plate is placed at a distance $-d \hat{\mathbf{z}}$ from the center of the charge distribution. Find the electrostatic potential due to $\rho(\mathbf{r})$ and the boundary condition $\Phi(x, y, z=-d)=0$ for a general point \mathbf{r} with $z>0$.
