PHY 712 – Problem Set #5

Consider a three-dimensional charge distribution of the form:

$$\rho(\mathbf{r}) = \frac{q}{\pi^{3/2}a^3} e^{-(r/a)^2}$$

where q and a are constants.

1. Show that the electrostatic potential $\Phi(\mathbf{r})$, as a function of the distance \mathbf{r} from the center of the charge distribution $\rho(\mathbf{r})$ is given by

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int d^3 r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = \frac{q}{4\pi\epsilon_0} \frac{\operatorname{erf}(r/a)}{r}.$$

2. Now suppose that a grounded metal plate is placed at a distance $-d\hat{\mathbf{z}}$ from the center of the charge distribution. Find the electrostatic potential due to $\rho(\mathbf{r})$ and the boundary condition $\Phi(x, y, z = -d) = 0$ for a general point \mathbf{r} with z > 0.