## Classical Electrodynamics, 3rd edition, E rrata for 8th printing

[E rrors not corrected in the 7th printing of September 2001. .Sent to Wiley Jan 7, Jan 23, and Feb 12, 2002. V erified as included correctly in the 8th printing, 12.02.02]
p. 48 - two lines above (1.79) - At beginning of line replace 1.21 with 1.22 .
p. 54 - Problem 1.19-last line, Change page numbers from 151-152 to 275-277.
p. 52 - Problem 1.14, end of 5th line up and beginning of 4th line up Replace $\left[\mathbf{G}(\mathbf{x}, \mathbf{y})-\mathbf{G}\left(\mathbf{x}^{\prime}, \mathbf{y}\right)\right]$ with $\left[\mathbf{G}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)-\mathbf{G}\left(\mathbf{x}^{\prime}, \mathbf{x}\right)\right.$ ]
p. 55 - Problem 1.22 (b) - In last two equations, replace "S tilde" on LHS with $\langle\langle F(0,0)\rangle\rangle$
p. 56 - Problem 1.24 (a) - Replace $\Phi$ in second line with $4 \pi \varepsilon_{0} \Phi$.
p. 98 - last line - parenthesis missing on the left. Replace $\left.d\left[1-x^{2}\right)^{\ell}\right]$ with $d\left[\left(1-x^{2}\right)^{\ell}\right]$
p. 100-second equation from the bottom of the page - left hand parenthesis missing in the square bracket of the integrand. replace $\left.[\ell+1) P_{\ell+1}+\ldots.\right]$ with $\left[(\ell+1) P_{\ell+1}+\ldots.\right]$
p. 141 - Problem 3.19 (c) - Summation index should be n, not m
p. 162, footnote - Replace L orentz-L orenz equation (1880) with L orenz-L orentz equation (1869, 1880)
p. 231 - A nswer for the interaction energy in Problem 5.25 (c) should read
$W_{12}=\mu_{0} I_{1} I_{2} d \cdot \operatorname{Re}\left\{e^{i \alpha}-\sqrt{e^{2 i \alpha}-a^{2} / d^{2}}\right\}$
[This corrected answer appears in the fifth and sixth prinitings, but has been replaced in the seventh printing by the original incorrect answer.]
p. 293 - Problem 6.24 (b) - The first equation should read $. \mathbf{B}=0+O\left(\partial^{2} I / \partial t^{2}\right)$
p. 296 - line below (7.6) - Replace "Using $k=\omega v \ldots .$. by "Using $\omega=k v \ldots$.
p. 326 - first footnote - A dd reference: B. Segard and B. M acke, Phys. Lett. 109A, 213 (1985).
p. 380 - first line of Eq.(8.108) - Change sign to $+\nabla\left(\frac{1}{\varepsilon} \mathbf{E} \cdot \nabla \varepsilon\right)$
p. 388 - line below Eq.(8.125) - Replace $\varepsilon=n^{2}$ with $\varepsilon=n^{2} \varepsilon_{0}$
p. 388 - second line in Eq.(8.127) - Replace the term $\gamma^{2} H_{z}$ on LHS with $\gamma^{2} E_{z}$. (End of list)

